首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为研究不同应力条件下岩体裂隙非饱和渗流特性及其影响因素,基于自主研发的岩体裂隙非饱和渗流试验系统,对4组灰岩裂隙试样开展变饱和度和不同围压条件下的渗透试验。试验结果表明:(1)随着围压的增加,裂隙进气值增大,非饱和渗透系数–毛细压力关系曲线下降斜率及幅度均减小,在相同毛细压力下,高围压对应的裂隙非饱和渗透系数要高于低围压的情况;(2)通过对比毛细压力、围压这2个因素对非饱和渗透系数的影响发现,随着毛细压力的增加,围压对非饱和渗透系数的影响降低;同样,随着围压的增加,毛细压力对非饱和渗透系数的影响降低;(3)随着粗糙度的增大,裂隙饱和渗透系数降低,残余饱和度有小幅增长;(4)基于不同围压和毛细压力下的裂隙非饱和渗流试验数据,对裂隙非饱和渗透系数与毛细压力和围压的关系式进行拟合,从拟合曲面与试验实测数据的对比来看,拟合关系式可以较为准确地描述试验测得的裂隙非饱和渗透系数随毛细压力和围压的变化。本文对变应力条件下裂隙非饱和渗流过程及规律的研究成果可为降雨入渗条件下的工程岩体稳定分析提供依据。  相似文献   

2.
通过开展不同渗透水压力与三轴压缩作用下的页岩试验,分析页岩的变形、强度和破坏特征,建立考虑渗透压作用的页岩全应力–应变损伤本构模型。结果表明:(1)在常规三轴压缩和渗透水压力共同作用下,页岩的强度明显弱化,残余强度受渗透压的影响较大。(2)在不同围压和渗透水压力作用下,页岩从剪切破坏到拉剪复合破坏再到陡倾角剪切破坏,共计产生5种不同的剪切破坏形式。(3)在常规三轴压缩和渗透水压力共同作用下,页岩强度仍满足M-C强度准则,但内摩擦角和黏聚力均随渗透压力的增大而降低。(4)建立能够反映页岩在不同围压和渗透压作用下的应力–应变全过程的损伤本构模型,并可通过总损伤变量–应变曲线预测页岩的残余强度,理论曲线与试验数据吻合较好。  相似文献   

3.
应力路径对饱和黄土孔压的影响研究   总被引:1,自引:1,他引:0  
利用SLB-1型应力应变控制式三轴剪切渗透试验仪,对陕西杨凌Q3饱和黄土进行了常规三轴压缩、减压三轴压缩和等p应力路径的各向等压固结不排水三轴试验,探讨和分析了应力路径对饱和黄土孔隙压力的影响,试验结果表明:不同应力路径作用下,饱和黄土的孔隙压力随着轴向应变的增大而不断增大;当土体的轴向应变较小时,孔隙压力基本上不受初始固结围压的影响,而当轴向应变超过5%之后,饱和黄土所受的初始固结围压越大,主应力差越大,其孔隙压力也会越大。  相似文献   

4.
通过3种应力路径的三轴试验,即同时控制吸力和净围压的12个三轴排水剪切试验、控制净平均应力的3个三轴收缩试验和控制吸力的3个各向同性压缩试验.对非饱和含黏砂土的强度、变形、屈服和水量变化特性进行了研究,得出如下结论:相同干密度,相同净围压作用下,吸力越大试样的剪切强度越大,剪胀性越强,应力应变曲线逐渐由应变硬化型向应变...  相似文献   

5.
粗砂岩变形破坏过程中渗透性试验研究   总被引:3,自引:1,他引:2  
利用三轴耦合试验机进行粗砂岩不同围压条件下的变形破坏过程渗透性试验,分析粗砂岩变形及破裂过程中渗透性的变化规律,研究围压对粗砂岩渗透性的影响,探讨试样变形过程中渗透系数与体积应变的关系。研究表明:粗砂岩三轴压缩变形过程中,渗透性变化的总体规律呈现出与偏应力–应变曲线相应的阶段性,即微裂隙压密阶段与弹性变形阶段,渗透性随偏应力增大呈略微降低;弹塑性变形阶段,随新生裂隙的扩展,渗透性先缓慢增大,而后急剧增大,峰值强度后达到极大值;残余流动阶段,产生的贯通性裂隙由于围压作用被压密而导致渗透性下降。在岩样变形破坏过程中,渗透性对环向应变的变化更为敏感。围压越大,粗砂岩渗透性变化曲线的峰值及峰后残余值越小,渗透系数–应变过程曲线越平缓。最后,基于多孔介质理论的质量守恒方程得到孔隙率与体积应变的关系式,采用Kozeny-Carman方程研究粗砂岩变形过程中渗透系数与体积应变的关系,计算结果显示,Kozeny-Carman方程在岩样以孔隙为主要渗流通道阶段适用性较好。  相似文献   

6.
利用WDT-1500大型多功能材料试验机对裂隙试样进行定围升轴、卸围升轴和定轴卸围3种应力路径条件下的试验,研究裂隙试样的变形特征、强度特征和破坏机制。试验结果表明:裂隙试样在不同应力路径下的力学参数变化明显:卸围升轴和定轴卸围下试样强度均低于定围升轴下的强度。不同应力路径条件下,试样峰值强度均随着裂隙倾角的增大而先降低后增大,裂隙倾角为30°或45°时最小。试样的力学特性主要受裂隙角度、应力路径、初始围压等的控制,裂隙倾角对峰值强度的影响最大,围压卸荷速率次之,初始围压最小。定围升轴下试样破坏形态多为剪切破坏,而卸围升轴和定轴卸围下试样多为张-剪混合破坏,卸围升轴下试样的张裂纹发育较少,定轴卸围下张裂隙发育显著。  相似文献   

7.
为研究卵石混凝土的三轴受压力学性能,进行了27个卵石混凝土试件的常规三轴试验,观察了试件的破坏形态,获取了其应力-应变全过程曲线及特征点参数,深入分析了围压对卵石混凝土力学性能的影响.结果 表明:随着围压的增大,卵石混凝土试件破坏形态先由轴向劈裂破坏转变为斜向剪切破坏,再转变为横向剪切破坏;围压越大,峰值应力、峰值应变...  相似文献   

8.
孔隙水压力-围压作用下砂岩力学特性的试验研究   总被引:5,自引:4,他引:1  
利用MTS815岩石力学测试系统进行两类三轴压缩对比试验:一类是非充水条件下不同围压时的三轴压缩试验;一类是充水条件且围压保持恒定时不同孔隙水压力作用下的三轴压缩试验。基于莫尔-库仑准则,分析非充水条件下,不同围压σ3作用对细砂岩的峰值破坏强度σ1max及其对应的轴向应变ε1max、剪切强度τ和正应力σ等参数的影响;充水条件下,围压σ3恒定时不同孔隙水压力P作用对细砂岩的峰值破坏强度σ1max及其对应的轴向应变ε1max、有效峰值破坏强度σ1′max、有效围压3σ′、有效剪切强度τ′和有效正应力σ′等参数的影响。研究结果表明:(1)充水条件下,随着有效围压σ3′的增加,有效峰值破坏强度σ1′max呈增大的趋势,但在相同围压条件下随孔隙水压力P的增加有效峰值破坏强度σ1′max呈逐渐减小的趋势;(2)非充水条件下的τ-σ曲线和充水条件下的τ′-σ′曲线既可采用一元二次方程拟合,也可采用线性方程拟合,其相应强度曲线均能较好地符合莫尔-库仑准则;(3)有效剪切强度折减系数K可以较好地表征孔隙水压力P对有效剪切强度τ′的影响。  相似文献   

9.
基于岩石三轴压缩应力–应变全过程渗透特性试验,结合三维声发射监测信息,研究花岗岩在不同围压条件下力学损伤演化机制及其对岩石渗透特性影响规律。本研究对常规渗透试验方法进行改进,通过在试样两端加工渗透小孔,实现岩石不同破坏形式下渗透性变化规律的测量。试验结果表明,在压缩应力作用下,花岗岩的损伤演化始于微裂隙的产生和扩展,并在岩石破坏时和峰后阶段发展迅速。该损伤演化的阶段性特征与声发射监测数据一致,进一步说明了裂隙扩展是导致花岗岩力学特性劣化的根本原因。随着微裂隙的扩展,岩石渗透性不断增强,但在峰前加载阶段渗透性变化明显滞后于损伤演化过程。该结果表明,在裂隙贯通并产生宏观破坏面之前,裂隙扩展对花岗岩渗透性影响非常有限。在低围压条件下,岩石渗透性随围压增大迅速减小;当围压增大到一定程度后,该趋势逐渐减弱。结合声发射监测数据,对不同应力条件下损伤演化与渗透特性的相互关系进行分析,并提出花岗岩渗透率与损伤和围压的相关经验公式。  相似文献   

10.
 基于岩石三轴压缩应力–应变全过程渗透特性试验,结合三维声发射监测信息,研究花岗岩在不同围压条件下力学损伤演化机制及其对岩石渗透特性影响规律。本研究对常规渗透试验方法进行改进,通过在试样两端加工渗透小孔,实现岩石不同破坏形式下渗透性变化规律的测量。试验结果表明,在压缩应力作用下,花岗岩的损伤演化始于微裂隙的产生和扩展,并在岩石破坏时和峰后阶段发展迅速。该损伤演化的阶段性特征与声发射监测数据一致,进一步说明了裂隙扩展是导致花岗岩力学特性劣化的根本原因。随着微裂隙的扩展,岩石渗透性不断增强,但在峰前加载阶段渗透性变化明显滞后于损伤演化过程。该结果表明,在裂隙贯通并产生宏观破坏面之前,裂隙扩展对花岗岩渗透性影响非常有限。在低围压条件下,岩石渗透性随围压增大迅速减小;当围压增大到一定程度后,该趋势逐渐减弱。结合声发射监测数据,对不同应力条件下损伤演化与渗透特性的相互关系进行分析,并提出花岗岩渗透率与损伤和围压的相关经验公式。  相似文献   

11.
 采用全自动三轴伺服仪,对花岗片麻岩开展渗流应力耦合试验,研究常规三轴压缩和轴压循环加卸载2种应力路径下,渗透率与渗压、围压、有效围压、体积应变及应力路径等因素的关系。结果表明:(1) 在2种不同应力路径下,岩石渗透率演化规律有差异性和一致性,同种路径下变形各阶段渗透率随有效围压增大而减小,但渗透率曲线的形态保持不变;(2) 渗压和围压对渗透率的影响,通过对岩石变形过程中内部微裂纹和孔隙变化产生作用,有效应力系数发生改变,有效围压效应随之改变;(3) 循环加卸载试验中,卸载渗透率均明显大于相应加载渗透率,体积应变转折前,加载渗透率减小,卸载后渗透率增加,形成比较完整的渗透率回滞环,体积应变转折后,加载渗透率增大,卸载渗透率降低不能够完全恢复;(4) 体积应变较轴向应变更清楚和灵敏反映渗透率变化规律,可把体积转折应变或其对应应力作为岩石渗透率变化的一项指标。试验研究旨在为岩石工程渗流–应力耦合稳定性分析提供参考。  相似文献   

12.
 为了探讨渗透压–应力耦合作用下岩石渗透率与变形的关联性,采用岩石伺服三轴试验系统,在不同围压和渗透压条件下,利用稳态法对砂岩全应力–应变过程进行渗透率试验研究。根据试样渗透率变化与其破坏过程的对应关系,分析全应力–应变过程中试样渗透率随其脆性、延性变化的特点及渗透率–轴向应变和渗透率–体积应变之间的关联性。试验结果表明:(1) 在渗透压–应力耦合作用下,试样初始渗透率、峰值强度随着围压与渗透压的改变而改变。(2) 在渗流场–应力场耦合作用下连续加载的全应力–应变过程中,渗透率先随着轴向应变的增大而逐渐减小,进入弹塑性阶段后,渗透率变化曲线随围压变化呈现增大、持平及减小3个不同趋势。其中,渗透率曲线持平的现象为三轴渗透试验研究中的新现象。(3) 围压较高时,若形成局部压缩带,则试样进入弹塑性阶段后,渗透率的变化趋势是由岩石微裂隙的萌生、扩展与岩石骨架颗粒压碎这2个主要因素共同决定的。(4) 岩石微裂隙的萌生、扩展对渗透率增大起积极作用,岩石骨架颗粒压碎形成的压缩带对渗透率增大起抑制作用。(5) 岩石进入塑性阶段后,随围压增大,渗透率由上升趋势转变为下降趋势的现象先于脆–延转换的临界状态发生。(6) 岩石的体积应变对渗透率有一定影响,在脆–延转换阶段存在体积应变增大而渗透率减小的现象,这需要其他能够更精确地测量体积应变变化的试验进一步验证。  相似文献   

13.
砂岩卸围压变形过程中渗透特性与声发射试验研究   总被引:3,自引:1,他引:2  
 利用岩石伺服试验系统,对江西红砂岩岩样进行气体渗透三轴试验及声发射监测,研究在常规加载、峰前卸围压和峰后卸围压3种应力路径下,岩样变形破坏过程中的渗透规律和声发射特征。试验结果表明:(1) 随着有效围压的增大,岩石岩样的应力峰值逐渐增大,岩样的应力峰值对有效围压很敏感。(2) 常规加载时,渗透率在岩石屈服前呈现略微下降的趋势,屈服后迅速增长,峰后应变软化阶段有小幅回落;峰前和峰后卸围压时,在卸载之前渗透规律与常规加载时相同,卸载后渗透率均呈急剧增长的趋势,增幅也较大,其中峰前卸围压后渗透率增幅最大。(3) 在相同加载方式下,围压的增大不影响渗透率曲线的发展趋势,只影响渗透率在各阶段量值的大小。(4) 常规加载时,岩石声发射活动在屈服前比较平静,屈服后声发射活动非常活跃,峰后应变软化阶段声发射活动再次趋于平静;峰前卸围压不久后,声发射活动异常活跃、密集,能量数相对值较大并有明显峰值;峰后卸围压过程与常规加载过程中声发射规律相似。(5) 岩样的破坏过程中,随围压增大,脆性减弱、延性增强,在同一围压水平下,峰前卸围压破碎程度最高,脆性最强。(6) 岩石扩容点与渗透率最小值所对应的轴向应变值十分接近,体应变和渗透率随轴向应变的变化趋势对应较好,声发射活动的密集阶段均发生在体积膨胀之后,渗透率、声发射、应力及(体)应变之间存在一定对应关系。  相似文献   

14.
利用柔性壁渗透仪对取自兰州地区的砂岩和砂质泥岩试样进行了渗透性能的试验研究,通过施加不同围压和渗透压,比较砂岩与砂质泥岩两者的渗透性能,并根据试验数据对渗透系数与渗透压进行拟合,同时,利用扫描电镜(SEM)对渗透前后的砂岩和砂质泥岩进行微观分析。试验结果表明:在200 kPa围压时,渗透系数随渗透压增加有增长趋势,在300 kPa、400 kPa围压时,渗透系数随渗透压增加先增大后保持稳定;在同等围压和渗透压下,砂质泥岩的渗透系数要大于砂岩;根据物理力学性质指标,可通过岩石吸水率和孔隙率对渗透系数进行判定。通过观察电镜结果可知,渗透试验前后,两者内部结构变化较大。  相似文献   

15.
地下工程岩体内部存在着大量不规则、多尺度的孔(裂)隙,使得其渗流问题十分复杂,研究裂隙岩体的渗流特性及流场分布对岩体工程安全和深部资源开发利用具有重要的工程实际意义.利用核磁共振岩石渗流过程实时在线分析与成像系统对含不同裂隙性状的砂岩试样开展裂隙岩石渗流试验,对渗流过程中试样的体积含水率、T2谱曲线和渗透系数等参数的演...  相似文献   

16.
贯通充填裂隙类岩石渗流特性试验研究   总被引:2,自引:0,他引:2  
利用3D打印技术制作平行、合并、T型、斜交以及正交裂隙,通过模具浇筑成贯通充填裂隙类岩石试样,应用低渗透岩石惰性气体渗透测试系统测试不同围压加卸载条件下贯通充填裂隙类岩石渗流特性,研究具有不同渗透结构面试样在不同围压作用下气体渗透率的变化规律。通过试验研究发现:充填物相同情况下,开度相同,形式不同的渗透结构面试样渗透率不同,但数量级上不存在差异,以围压加载25 MPa为例,平行裂隙试样渗透率最大,合并裂隙试样渗透率最小;试样渗透率随围压变化曲线在围压加载阶段高于卸载阶段,不同渗透结构面试样渗透率随围压变化波动幅度不同;围压加载阶段贯通充填裂隙类岩石渗透率与围压关系符合多项式函数;不同试样渗透率对应力敏感系数随围压变化曲线在围压加载阶段变化趋势不尽相同,在围压卸载阶段各曲线变化趋于接近,呈"W"型,贯通充填裂隙类岩石渗透率对应力敏感性受渗透结构面影响。  相似文献   

17.
锦屏二级水电站大理岩不同应力路径下加卸载试验研究   总被引:4,自引:2,他引:2  
 针对锦屏二级水电站引水隧洞赋存于高地应力环境的特点,对隧洞内的大理岩开展常规三轴压缩试验及峰前、峰后卸围压试验,通过试验数据对比分析,研究大理岩的强度变形特征及破裂机制。主要研究成果:(1) 大理岩峰值强度与实时围压关系密切,应力路径不同、实时围压相同时,峰值强度相同。(2) 围压效应明显,峰值强度随初始围压增加而增加;相比三轴加载试验,峰前卸围压试验峰值强度降低约19.5%,峰后卸围压试验规律不明显,而峰后卸围压试验达到峰值强度时的围压值约占初始围压值的 97.2%,峰前卸围压试验结果较离散。(3) 相比三轴加载试验,峰前卸围压试验c值降低约27.5%, 值提高约22.6%,而与此相反,峰后卸围压试验c值增加约13.7%, 值降低约6.5%,表明大理岩抗破裂的主控因素峰前卸围压试验由摩擦力控制,峰后卸围压试验由黏聚力控制。(4) 峰后卸围压试验自卸荷点开始出现明显的应变平台,表现为理想塑性变形。(5) 峰前卸围压试验的体积应变自卸荷点开始出现明显的转折点。(6) 三轴压缩试验和峰后卸围压试验,大理岩的破坏模式主要为单一剪切破坏,随着围压增加,剪切破裂面端口的粗糙程度降低;峰前卸围压试验的破坏模式为:低围压时的劈裂破坏~中等围压时的“X”型共轭剪切破坏~高围压时的单一剪切破坏。这些研究结论揭示了锦屏大理岩加、卸载应力路径下的力学特性差异,可为西部深埋引水隧洞的开挖、支护设计及稳定性分析提供理论参考。  相似文献   

18.
不同成岩作用程度砂岩物理力学性质三轴试验研究   总被引:16,自引:1,他引:16  
采用三轴岩石力学测试系统分析了不同侧压条件下砂岩岩石的孔渗性和力学特性及变形破坏机制 ,建立了砂岩岩石物理力学性质与侧压之间的相关关系。研究表明 ,砂岩的孔隙度和渗透率均随侧压的增大而减小 ,且服从对数函数变化规律。砂岩的刚度和强度均随侧压的增大而增大 ,具有明显的压硬性。岩石破坏后的残余强度随着侧压的增加下降梯度减小 ,而残余强度值相对提高。不同侧压下岩石的破坏机制表现出随着侧压的增大 ,成岩作用程度较弱的岩石应力 -应变曲线由应变软化性态向近似应变硬化性态过渡 ;而成岩作用程度相对较强的岩石在单轴压缩条件下表现为脆性张破坏 ,随着侧压的增加 ,便进入剪切破坏 ,岩石应力 -应变曲线表现出明显的脆性和应变软化特性  相似文献   

19.
低渗透岩石三轴压缩过程中的渗透性研究   总被引:5,自引:2,他引:3  
 采用岩石全自动三轴伺服仪,对低渗透花岗岩进行考虑渗透水压作用的三轴渗流–应力耦合试验。基于试验结果,研究花岗岩在不同围压和渗压下的渗透特性,分析岩石应力、应变变化过程中渗透率随围压、渗压和体积应变的变化规律。试验结果表明:岩石的应力–应变关系具有典型的脆性特征,渗压相同围压不同时,岩石强度随围压增大而增加;围压相同渗压不同时,较低的渗压对低渗透岩石强度影响不明显。岩样体积应变经过压密和扩展2个阶段,最大体积压缩应变随着围压的增加而增加,而岩样渗透率最小值并未出现在最大压密处,而是出现在体积应变拐点前,约在最大压密体积应变的95%处,并给出渗透率与体积应变的关系式。  相似文献   

20.
 了观察和度量岩石空隙结构随应力的变化,研制了一种能和微焦X射线CT系统配套使用的三轴仪,该设备轻便,能够施加三轴压力,并在不卸载压力情况下对试样进行CT扫描和渗透系数的测量,且能够实时记录压力和变形等数据。利用研制的CT三轴仪得到了Berea砂岩在加载过程中的一系列CT图像,结合3DMA空隙结构计算方法,获得了Berea砂岩在不同应力状态下的有效孔隙半径分布、有效喉道半径分布以及弯曲度分布等定量细观几何特征。同时采用瞬态脉冲法测量了Berea砂岩不同方向的渗透率随有效围压的变化规律。结合围压对细观空隙结构参数的影响,认为细观空隙结构的变化是导致渗透发生改变的根本原因,当有效围压从零增至15 MPa时,半径40~100 μm的孔隙数量减少、孔喉半径减小以及Z方向的迂曲度增加,这是导致Berea砂岩渗透率随有效围压增大而降低的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号