首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
石膏种类对硅酸盐水泥性能的影响   总被引:5,自引:0,他引:5  
通过对原材料特性、水泥物理力学性能、水泥水化产物扫描电镜分析等方面的分析试验,研究了不同种类的石膏对硅酸盐水泥性能和水化过程的影响。结果表明:掺加硬石膏的水泥与掺加二水石膏的水泥相比,强度有所降低;半水石膏使硅酸盐水泥标准稠度用水量增大,并且其早期强度较低,不符合国家标准;在水泥中加入磷石膏做缓凝剂,对凝结时间影响较大,但对强度影响不太明显;氟石膏作水泥缓凝剂有良好的效果,水泥强度符合要求,对水泥性能未见不良影响。  相似文献   

2.
以粉煤灰、矿渣粉和硅灰为混合材制备海工硅酸盐水泥,通过掺入不同量的石膏,研究石膏掺量对海工硅酸盐水泥物理性能及耐久性能的影响。试验结果表明,适宜的石膏掺量(7%),具有明显的缓凝作用,可有效激发海工硅酸盐水泥的活性,提高水泥砂浆的早期强度;当石膏掺量超过适宜范围时(7%),会降低海工水泥的早期、后期强度,进而影响海工硅酸盐水泥的耐久性能。XRD和SEM分析表明,与P·O42.5水泥相比,适宜的石膏掺量(7%)可以提高水泥水化体系中AFt的生成量,使水泥石更加致密,孔隙率小,凝胶体多,使得水泥硬化体具有优异的力学性能和耐久性能。  相似文献   

3.
将磷铝酸盐水泥熟料掺入硅酸盐水泥中改性后,运用XRD和SEM等测试技术,研究了石膏对改性硅酸盐水泥性能的影响.结果表明,石膏的掺入可以改善改性硅酸盐水泥的力学性能和抗冻性;在石膏掺量为3.5%时,改性硅酸盐水泥水化速度最快,硬化浆体的结构最致密,强度最高,抗冻性最好.  相似文献   

4.
石膏品种对硅酸盐--硫铝酸盐复合体系水泥性能的影响   总被引:1,自引:0,他引:1  
在试验研究不同石膏品种对硅酸盐-硫铝酸盐复合体系水泥凝结时间、标准稠度需水量、强度等性能影响的基础上,探讨了石膏品种对硅酸盐-硫铝酸盐复合体系水泥性能的影响机理。结果表明:二水石膏对该种复合体系水泥的缓凝作用比硬石膏明显,硬石膏易引起复合体系水泥急凝和需水量增大。石膏品种对硅酸盐一硫铝酸盐复合体系水泥强度的影响较复杂,与水泥体系中含铝矿物及其水化溶液中SO4^2-离子浓度有关;在蒸馏水和饱和石灰水中,二水石膏的溶解速度比硬石膏快,溶解度比硬石膏低。推导证实,石膏的溶解速度和溶解度是决定硅酸盐-硫铝酸盐复合体系水泥性能的主要因素。  相似文献   

5.
研究了不同掺量硬石膏和脱硫石膏对高贝利特硫铝酸盐水泥熟料抗压强度、水化放热和水化产物的影响。结果显示:无论硬石膏或者脱硫石膏,当掺量为15%时,熟料的抗压强度达到最大值;当硬石膏掺量小于5%时,对熟料具有一定的缓凝作用,随着掺量的增加,硬石膏的加入会促进熟料的水化;当加入脱硫石膏时,同样促进了熟料的水化反应进程,与硬石膏相比,脱硫石膏在低掺量时并未有缓凝作用,且力学性能相差较小,由此可见利用脱硫石膏调控高贝利特硫铝酸盐水泥熟料性能是可行的。  相似文献   

6.
在保持优异耐久性前提下提高中、低热硅酸盐水泥早期力学性能,对于其在建筑工程中的更广泛应用意义重大。本文以高活性偏高岭土(MK)为辅助性胶凝材料,研究了其替代性掺入对中、低热硅酸盐水泥水化、力学性能和干燥收缩的影响。研究结果表明:MK在水泥水化早期即可发生火山灰反应,从而促进水泥熟料矿物早期水化,缩短中、低热硅酸盐水泥水化诱导期和提前水化加速期。由于MK火山灰反应对熟料矿物水化反应的部分替代,掺MK中、低热硅酸盐水泥7d累积水化热有一定降低。MK的掺入提高了中热硅酸盐水泥早期抗压强度,但对低热硅酸盐水泥早期力学性能影响不大;MK的掺入对中、低热硅酸盐水泥长龄期抗压强度增长更为有利。MK可进一步降低中、低热硅酸盐水泥干燥收缩,这主要是由于MK的持续火山灰反应大幅细化了水泥石孔结构,降低了体系总孔隙率。  相似文献   

7.
刘文斌 《粉煤灰》2013,(2):41-42,46
研究普通硅酸盐水泥、石膏及石灰掺入硫铝酸盐水泥中后对其凝结时间和强度的影响。研究表明:普通硅酸盐水泥掺量增大使得硫铝酸盐水泥凝结时间缩短,强度下降;石灰和石膏的掺入对硫铝酸盐水泥水化有一定的促进作用,且适当的比例对硫铝酸盐水泥的后期强度无不利影响。普通硅酸盐水泥、石灰和石膏的混掺对硫铝酸盐水泥的影响大小则与其掺量的多少有关。  相似文献   

8.
沈燕  王培芳  朱航宇 《硅酸盐通报》2021,40(12):3910-3917
硫硅酸钙-硫铝酸钙水泥是一种新型低碳水泥,硫硅酸钙矿物的水化活性对水泥性能具有积极作用。本文利用离子掺杂制备了硫硅酸钙-硫铝酸钙水泥,研究了硫硅酸钙、硫铝酸钙矿物以及后掺石膏的配比优化。结果表明,硫硅酸钙-硫铝酸钙水泥熟料的实际矿物组成与设计含量较为一致。硫铝酸钙含量的增加有利于提高水泥的早期强度,其适宜含量范围为30%~40%(质量分数);水泥的强度随着硫硅酸钙含量的增加而提高,当其设计含量增加至48%(质量分数)时,水泥强度降低,该矿物的适宜含量范围为40%~55%(质量分数),其优化含量根据硫铝酸钙的含量而有所不同。石膏的添加有利于硫硅酸钙-硫铝酸钙水泥强度的增长,与天然石膏相比,硬石膏更能促进水泥强度的发展;水泥的后掺石膏优选硬石膏,其优化掺量为8%(质量分数),28 d强度达到76 MPa。硬石膏掺量的增加促进了钙矾石的形成,但过高掺量的硬石膏会抑制硫硅酸钙的水化。  相似文献   

9.
张翔  何廷树  何娟 《硅酸盐通报》2014,33(4):796-799
在脱硫石膏中掺入不同质量分数的硅酸盐水泥和粉煤灰,组成硅酸盐水泥-粉煤灰-脱硫石膏复合材料,研究了其力学性能和耐水性能.结果表明:当硅酸盐水泥和粉煤灰的掺量分别为16%和8%的时,其7d的抗折强度达5.85 MPa、抗压强度达21.33 MPa,吸水率下降18.19%.在硅酸盐水泥、粉煤灰和脱硫石膏的共同作用下,硅酸盐水泥和粉煤灰水化生成的主要产物水化硅酸钙、钙矾石填充于脱硫石膏晶体之间和硬化体的空隙当中,有效增强了脱硫石膏的强度,降低了吸水率.  相似文献   

10.
权娟娟  张凯峰  王可娜 《硅酸盐通报》2017,36(12):4033-4037
采用质量分数为5%~25%的改性磷石膏、15%的硅酸盐水泥熟料、60%~80%的矿渣混合磨细制成石膏矿渣水泥,研究了改性磷石膏掺量对石膏矿渣水泥浆体的抗压强度、水化热、孔溶液pH值及水化产物的影响情况.结果表明,掺入改性磷石膏使得石膏矿渣水泥的3 d、7 d抗压强度降低,其掺量为10%、15%时,水泥的28 d、90 d抗压强度超过普通硅酸盐水泥.在3 d至90 d龄期内,水泥孔溶液pH值随龄期增长而逐渐增大.在相同龄期时,随着改性磷石膏掺量的增大,水泥孔溶液pH值减小,水化放热峰出现时间延缓.微观分析表明,掺入改性磷石膏后,28 d龄期时的水泥水化产物主要为钙矾石和C-S-H凝胶,水化产物的生成量在改性磷石膏掺量为15%时最多.  相似文献   

11.
通过对微膨胀低热硅酸盐水泥的生产控制特点分析,实施微膨胀低热硅酸盐水泥工业化生产;对生产的微膨胀低热硅酸盐水泥的水化放热、耐磨及干缩性、后期远期强度及抗裂性等性能进行分析,结果表明用该微膨胀低热硅酸盐水泥配制的大体积混凝土具有优越性能。  相似文献   

12.
低热硅酸盐水泥因水化热低而被大量应用于高等级大体积混凝土工程以降低温度应力给结构带来的开裂风险。此外,高温下强度增长稳定的特点决定其能在高热施工环境发挥作用,优良的体积稳定性有利于解决混凝土结构开裂问题,较高的后期强度和优良的抗侵蚀性能适合用于高性能混凝土的制备。本文从水化、性能等角度出发,分析了低热硅酸盐水泥在水化调控、水化产物及微观结构、性能优化等方面存在的部分问题,总结了低热硅酸盐水泥高温耐受、抗侵蚀、体积稳定等性能特点,提出了低热硅酸盐水泥在严酷环境、高热环境中的应用展望。  相似文献   

13.
研究了石膏掺量对高阿利特水泥抗海水侵蚀和抗渗性能的影响,并与普通水泥进行了比较。利用XRD、SEM—EDS等测试方法对水泥水化产物的物相组成和形貌进行分析、观察;用压汞法对水泥硬化浆体的孔结构进行了分析。结果表明,石膏掺量对高阿利特水泥硬化浆体的致密性有较大影响,进而影响水泥砂浆的抗海水侵蚀性能,石膏的适宜掺量为5%,在此掺量下高阿利特水泥的抗蚀系数达1.01,而普通水泥的抗蚀系数仅为0.87,高阿利特水泥的有害孔较少,总孔隙率较低,抗渗性能得到较大改善。  相似文献   

14.
磷石膏作水泥缓凝剂及其成粒工艺研究   总被引:4,自引:4,他引:0  
研究了不同预处理方式的磷石膏作缓凝剂对水泥性能的影响,结果表明:石灰中和预处理磷石膏可用作硅酸盐水泥、矿渣水泥的缓凝剂、煅烧磷石膏适用于粉煤灰水泥。介绍了以熟石灰、水泥熟料、熟石膏为助剂的成粒工艺。  相似文献   

15.
硬石膏对硅酸盐水泥性能的影响   总被引:6,自引:0,他引:6  
研究了在硅酸盐水泥中使用硬石膏完全代替二水石膏对硅酸盐水泥性能的影响。结果表明硬石膏对硅酸盐水泥的凝结时间无不良影响,对其3d和28d抗压强度的影响也小于5%;当熟料中的w(C3A)<11%时,掺硬石膏不会对水泥凝结时间性能产生不良影响,但w(C3A)>13%时则会引起水泥快凝,此时最好采用硬石膏与二水石膏混掺或只使用二水石膏。  相似文献   

16.
Portland cements containing tartaro- and titanogypsum were respectively hydrated for up to two hours at a water: cement ratio of 0.5. They were compared with a Portland cement containing high grade natural gypsum hydrated similarly. The cement containing tartarogypsum produced much more ettringite than those with titanogypsum and natural gypsum. Comparisons were made with previous examinations of the hydration of Portland cements containing other by-product gypsums. Reasons for the observed hydration behaviour of the Portland cements with tartaro- and titanogypsum are discussed.  相似文献   

17.
Portland cements containing boro-, citro- and desulphogypsum, respectively, were hydrated at water:cement ratio 0.5 for up to two hours and compared with a Portland cement containing high grade natural gypsum hydrated similarly. It was found that the cements containing boro- and citrogypsum produced considerably more ettringite than those with desulpho- and natural gypsum. Comparisons were made with previous investigations of Portland cements containing fluoro-, formo- and phosphogypsum, respectively, hydrated under analogous conditions. Reasons for the observed hydration behaviour of the Portland cements containing the aforementioned chemical gypsums are discussed.  相似文献   

18.
The early stages of hydration of four different types of portland cements were studied by electron-optical and X-ray diffraction techniques. It was observed that, except for low-heat cement, very little ettringite formed up to 3 hours of hydration and that the alite present in the cements was more reactive than the laboratory form. Ettringite formed earlier in the low-heat cement than in other cements. Ettringite was found to be the stable sulfate-bearing phase in sulfateresistant cement, at least up to 30 months, although in other cements ettringite began to change to monosulfate by 14 days. Direct evidence was found for the formation of gypsum from either CaSO4±0.5H2O or soluble anhydrite in some cements.  相似文献   

19.
管宗甫 《硅酸盐通报》2018,37(3):1083-1087
利用正交实验研究了硅酸盐水泥和其他两种矿物组分复合激发对脱硫石膏-矿渣体系强度的影响,用SEM、XRD分析了水化样品的微观结构.研究结果表明:硅酸盐水泥等多组分复合激发下,脱硫石膏-矿渣体系在水中标准条件养护,3 d抗压强度达17 MPa以上,28 d抗压强度达58 MPa以上.复合激发剂3种组分的优化组合为6:6:5,复合激发剂的用量为脱硫石膏-矿渣体系质量的17%左右.脱硫石膏-矿渣体系在复合激发条件下的水化产物主要是钙矾石和C-S-H.大量钙矾石、石膏晶体相互交叉连生,未水化石膏、矿渣颗粒所填充其间,在C-S-H凝胶的胶结下,形成了较为致密的晶胶搭配构成的微观结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号