首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
爆炸喷涂技术制备热障涂层的研究   总被引:12,自引:0,他引:12  
采用爆炸喷涂技术在M38G合金上制备热障涂层,分析了涂层的结构,形貌,显微硬度,并对涂层的氧化性能进行了研究,结果表明,爆炸喷涂制备的热障涂层均匀,致密,高温氧化过程中,陶瓷层与粘结层界面处生成了连续的Al2O3膜,使TBCs具有良好的抗高温氧化性。  相似文献   

2.
Thermal barrier coatings (TBCs) with a typical 8YSZ ceramic top coat and CoNiCrAlY bond coat were deposited on titanium alloy substrate (Ti-6Al-4V in wt.%) by air plasma spraying. Thermal insulation and thermal shock resistance of the TBCs at different temperatures as well as their failure behavior were investigated. The results showed that the test temperature had a significant effect on thermal shock life of the TBCs. Failure of the TBCs systems was caused by the formation of crack, bond coat oxidation and elemental diffusion. The vertical cracks induced by thermal shock cycles were probably responsible for the enhancement in thermal shock resistance of the TBCs. Furthermore, elemental diffusion had a great effect on the acceleration of the TBCs failure. The TBCs could provide a good thermal protection for the titanium alloy substrate.  相似文献   

3.
The failure mechanisms of thermal barrier coatings (TBCs) subjected to a thermal load are still not entirely understood. Thermal stresses and/or oxidation cause the coating to fail and hence must be minimized. During the present investigation, TBCs up to 1.0 mm were sprayed and withstood high thermal stresses during thermal testing. Owing to the substantial thickness, the temperature at the top coat/bond coat interface was relatively low, resulting in a low oxidation rate. Furthermore, bond coats were preoxidized before applying a top coat. The bond strength and the behavior during three different thermal loads of the preoxidized TBCs were compared with a standard duplex TBC. Finite-element model (FEM) calculations that took account of bond coat preoxidation and interface roughness were made to calculate the stresses occurring during thermal shock. It is concluded that the thick TBCs applied during this research exhibit excellent thermal shock resistance and that a preoxidizing treatment of the bond coat increases the lifetime during thermal loading, where oxidation is the main cause of failure. The FEM analysis gives a first impression of the stress conditions on the interface undulations during thermal loading, but further development is required.  相似文献   

4.
《Intermetallics》2007,15(5-6):801-804
The failure behaviors of thermal barrier coatings (TBCs) during room temperature tensile test and 1100 °C stress rupture test have been studied in the present investigation. The TBCs were prepared by electron beam physical vapor deposition (EB-PVD). The experimental results showed that during room temperature tensile test cracks initiated from the concave area of the bond coat surface, as well as the interface between the bond coat and the alloy substrate. The cracks may originate from the internal stress arising from the mechanical property differences between the bond coat and the substrate alloy. The similar failure of TBCs and the diffusion of Mo from the alloy substrate to TBCs were observed while in the case of high temperature stress rupture test, however, the failure of TBCs was not as serious as that in the case of room temperature tensile tests and the reason may be attributed to the formation of diffusion zone between the bond coat and the substrate alloy.  相似文献   

5.
Degradation in bond strength of plasma-sprayed thermal barrier coatings under thermal cycling was evaluated by tensile adhesion tests. The bond strength and failure mode for two types of bond coat materials were examined. Two bond coats having the same substrate and top ceramic coat behaved differently due to differences in the thermal mismatch stress at an interface between the metallic bond coat and the ceramic top coat.  相似文献   

6.
Thick thermal barrier coatings (TBCs), consisting of a CoNiCrAlY bond coat and yttria-partially stabilized zirconia top coat with different porosity values, were produced by air plasma spray (APS). The thermal fatigue resistance limit of the TBCs was tested by furnace cycling tests (FCT) according to the specifications of an original equipment manufacturer (OEM). The morphology, residual stresses, and micromechanical properties (microhardness, indentation fracture toughness) of the TBC systems before and after FCT were analyzed. The thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling; nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/top coat interface. The failure mechanism of thick TBCs was found to be similar to that of conventional thin TBC systems made by APS.  相似文献   

7.
采用电子束物理气相沉积法(EB-PVD)在定向凝固Ni基高温合金DZ125基体上制备了NiCoCrAlY粘结层和YSZ陶瓷层,研究了高温拉压环境下热障涂层的失效模式,并对其进行了有限元分析。实验结果表明,热障涂层的失效与仅受热载荷作用下的有很大不同,仅有热载荷作用下的热障涂层裂纹多萌生于热氧化层(TGO)内部,进而扩展引起热障涂层的失效。而高温拉压试验后热障涂层体系存在两种裂纹,分别萌生于TGO/粘结层界面和粘结层/扩散层界面附近。有限元模拟结果显示TGO/陶瓷层和TGO/粘结层处存在应力状态的转变和应力值的突变,径向应力的突变导致了界面分离现象的产生,而轴向应力的突变加速了垂直于界面裂纹的扩展,并导致了试样的最终断裂。  相似文献   

8.
The effects from thermal shock loading on pre-existing microcracks within thermal barrier coatings (TBCs) have been investigated through a finite element based fracture mechanical analysis. The TBC system consists of a metallic bond coat and a ceramic top coat. The rough interface between the top and bond coats holds an alumina oxide layer. Stress concentrations at the interface due to the interface roughness, as well as the effect of residual stresses, were accounted for. At the eventual closure between the crack surfaces, Coulomb friction was assumed. To judge the risk of fracture from edge cracks and centrally placed cracks, the stress intensity factors were continuously monitored during the simulation of thermal shock loading of the TBC. It was found that fracture from edge cracks is more likely than from centrally placed cracks. It was also concluded that the propagation of an edge crack is already initiated during the first load cycle, whereas the crack tip position of a central crack determines whether propagation will occur.  相似文献   

9.
EB-PVD热障涂层热循环过程中粘结层的氧化和相结构   总被引:7,自引:0,他引:7  
采用磁控溅射方法在镍基单晶高温合金基体上沉积Ni-30Cr-12Al-0.3Y(质量分数,%)粘结层,采用电子束物理气相沉积方法(EB-VPD)沉积7%Y2O3(质量分数)-ZrO2陶瓷顶层,结果表明,在热循环过程中,非平衡相t′-ZrO2中的Y2O3含量逐渐减少,t′-ZrO2相逐渐分解成平衡相t-ZrO2(冷却时变转变成斜相)和立方组ZrO2,1050℃循环200次,粘结层氧化物(Al2O3)厚度约为3μm,表明Ni-Cr-Al-Y达宜作粘结层,继续热循环,陶瓷层中出现单斜阳,粘结层中Al贫化,氧化层中出现NiO及尖晶石等,引起应力集中,导致涂层失效。  相似文献   

10.
TGO界面特征对热障涂层残余应力的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
韩志勇  张华  王志平 《焊接学报》2012,33(12):33-36
采用非线性有限元方法模拟计算了热障涂层中陶瓷层(TCC)及粘结层(BC)与热生长氧化物(TGO)层界面的残余应力的分布,计算过程中,考虑到了材料物性的非线性特征及界面形貌特征的影响.结果表明,形貌单元尺寸及分布密度对TGO界面应力有明显的影响,TCC/TGO界面的应力大于BC/TGO界面的应力.在锥形坑形貌中心尖点处存在应力集中现象,且呈现最大应力值,是涂层失效的危险点,并且残余应力值随着界面形貌分布密度的增加而减小.  相似文献   

11.
王博  刘洋  栾胜家  彭新  程玉贤 《表面技术》2023,52(2):263-271
目的 设计热障涂层黏结层结构,改善涂层结合强度和抗热震性能。方法 制备了5种结构的CoNiCrAlY黏结层,即超音速火焰喷涂(HVOF)底层+等离子喷涂(APS)上层的双层结构黏结层试样,对其进行1 050℃真空热处理3 h后的试样,APS黏结层试样,HVOF黏结层试样及其真空热处理试样。再在以上5种试样表面制备Y2O3部分稳定ZrO2(YSZ)陶瓷层,研究黏结层的表面粗糙度、相组成、微观组织结构及其对涂层试样结合强度、热震性能的影响。结果 制备态的黏结层由γ/γ’和β-NiAl两相组成,真空热处理后β相含量增多,表面粗糙度下降。在所有涂层试样中,双黏结层的涂层试样的结合强度最低,为28.43 MPa;对其真空热处理后得到的涂层试样的结合强度最高,达到39.42 MPa,主要原因在于热处理促进了两黏结层之间的扩散,提高了界面强度。双黏结层的涂层试样的抗热震性能最好,200次热震后涂层无明显剥落,而APS黏结层的涂层试样的抗热震性能最差,涂层抗热震性能的差异在于黏结层微观结构的不同。结论 双黏结层的结构设计综合了APS、H...  相似文献   

12.
This article addresses the predominant degradation modes and life prediction of a plasma-sprayed thermal barrier coating (TBC). The studied TBC system consists of an air-plasma-sprayed bond coat and an air-plasma-sprayed, yttria partially stabilized zirconia top layer on a conventional Hastelloy X substrate. Thermal shock tests of as-sprayed TBC and pre-oxidized TBC specimens were conducted under different burner flame conditions at Volvo Aero Corporation (Trollhättan, Sweden). Finite element models were used to simulate the thermal shock tests. Transient temperature distributions and thermal mismatch stresses in different layers of the coatings during thermal cycling were calculated. The roughness of the interface between the ceramic top coat and the bond coat was modeled through an ideally sinusoidal wavy surface. Bond coat oxidation was simulated through adding an aluminum oxide layer between the ceramic top coat and the bond coat. The calculated stresses indicated that interfacial delamination cracks, initiated in the ceramic top coat at the peak of the asperity of the interface, together with surface cracking, are the main reasons for coating failure. A phenomenological life prediction model for the coating was proposed. This model is accurate within a factor of 3.  相似文献   

13.
等离子喷涂Al2O3与ZrO2复合热障涂层的高温性能   总被引:5,自引:0,他引:5  
采用等离子喷涂(PS)方法,在GH536高温合金基材上制备了传统的双层热障涂层(TBCs)和2种含有Al2O3与ZrO2陶瓷复合层的3层热障涂层。传统TBC8结构为Ni22Cr10AlY合金连接层和8%Y2O3部分稳定的ZrO2(8YPSZ)陶瓷顶层;3层TBCs中分别采用置于8YPSZ陶瓷层内层及外层的Al2O3与8YPSZ复合层。3种类型试样的100h。1050℃静态氧化试验及1050℃热震试验结果表明:3层涂层较双层涂层的氧化阻力提高,双层涂层的热震阻力最佳,氧化阻力最差。不同复合层形式试样的热振失效方式和寿命也有差别,复合层置于陶瓷层外层热震寿命略高,但100h氧化增重有明显提高,抗氧化性降低。  相似文献   

14.
The thermal stability and failure mechanism of thick thermal barrier coatings (TBCs) with and without vertical type cracks were investigated through the cyclic thermal exposure and thermal-shock tests. The TBC systems with thickness of about 2000 µm in the top coat were prepared by an air plasma spray (APS) on the bond coat of about 150 µm in thickness prepared by APS. The adhesive strength values of the as-prepared TBCs with and without vertical type cracks were determined to be 24.7 and 11.0 MPa, respectively, indicating the better interface stability in the TBC with vertical type cracks. The TBC with vertical type cracks shows a better thermal durability than that without vertical type cracks in the thermal cyclic exposure and thermal-shock tests. The hardness values of the as-prepared TBCs with and without vertical type cracks were found to be 6.6 and 5.3 GPa, respectively, which were increased to 9.5 and 5.5 GPa, respectively, after the cyclic thermal exposure tests. These results indicate that the vertical type cracks developed in the top coat are important in improving the lifetime performance of thick TBC in high temperature environment.  相似文献   

15.
研究了ZrO2-NiCoCrAlY热障涂层的抗热震性和热震失效机理。实验结果表明,梯度热隙涂层能明显延缓热震裂纹的形成和扩展,具有较高的抗热震性。热震裂纹形成与扩展主要在粘结层与基体的界面处。随热循环次数的增加,热震裂纹可在表面陶瓷层内和陶瓷层与过渡层的界面处形成。实验表明热障涂层热震失效的过程主要是裂纹形成、扩展及涂层剥落,粘结层的氧化是导致涂层剥落失效的重要原因。  相似文献   

16.
采用声发射技术实时监测喷涂态8% Y2O3稳定的ZrO2(8YSZ)在四点弯曲载荷下的损伤断裂行为。采用特征参数分析、聚类分析和小波包变换分析声发射信号结合涂层的微观形貌和应力状态,从而推测出热障涂层系统的失效形式。结果表明:内弯和外弯两种加载模式下,均各有4种失效行为。宏观断裂对应的剥落信号无明显频带,而基底变形、表面垂直裂纹、张开型界面裂纹和剪切型界面裂纹信号对应的主频带可清晰区分为:0~156.25 kHz、156.25~234.375 kHz、312.625~390.625 kHz和390.625~468.75 kHz。热障涂层在外弯载荷下,表面垂直裂纹不断出现,随后扩展到粘结层-陶瓷层界面处并转化为张开型界面裂纹;而在内弯载荷下,则在粘结层-陶瓷层界面附近产生剪切型界面裂纹,仅出现少量的表面垂直裂纹。两种界面裂纹均会引起热障涂层的宏观裂纹和剥落。  相似文献   

17.
The application of thermal sprayed coatings for pig iron ingot molds   总被引:2,自引:0,他引:2  
Molds made of gray cast iron for casting pig iron ingots are subjected to severe temperature fluctuations. The main life- limiting factor for mold damage is the formation of surface cracks arising from thermal fa-tigue. Various flame and plasma sprayed coatings were investigated to extend the life of these molds. Coating materials studied include plasma sprayed ceramic coatings with bond coats as well as flame sprayed oxidation- resistant alloy powders. The results of cyclic furnace tests from room temperature to 1100 °C in air, simulating the thermal cycle in casting, indicated that failure occurred along the interface between the bond coat and the gray iron substrate because of iron oxidation, and not at the interface between the ceramic top coat-ing and the bond coating for a superalloy substrate. The field test results indicated that plasma sprayed alumina coatings with 200 μm top coating thickness are the most promising materials for pig iron casting.  相似文献   

18.
热障涂层作为燃气轮机高温部件的关键材料,其服役过程中的脱落与失效机理一直是研究的热点问题。本文主要研究了应变幅和相角度对含热障涂层的镍基高温合金热机械疲劳性能的影响。研究结果表明,在相同相角度下,热机械疲劳寿命随应变幅的增大而降低。固定应变幅,同相位下样品的热机械疲劳寿命要高于反相位样品。所有样品中,裂纹萌生于热生长氧化物层,在粘结层与陶瓷层界面扩展形成分层裂纹,分层裂纹与陶瓷层内贯穿裂纹连接起来导致大面积的陶瓷层剥落,从而导致TBC层失效。另外,本文分析了热障涂层中的应力分布,初步建立了含热障涂层的镍基高温合金热机械疲劳寿命模型,发现含热障涂层的镍基高温合金热机械疲劳寿命与涂层中的最大应力呈指数关系。  相似文献   

19.
基于IN738高温合金基体上涂覆的热障涂层系统(Thermal barrier coating system,TBCs),分析热循环和热梯度机械疲劳加载条件下涂层的应力分布及演变。通过有限元分析研究了热生长氧化层(Thermally growth oxidation,TGO)的应力分布,以预测不同载荷作用下TBCs的失效行为。结果可知,在热循环的基础上施加应变载荷会造成TGO应力性质及大小的改变。只施加温度载荷,在加热过程中TGO/粘结层(Bond coat,BC)界面波峰位置会承受轴向较大的拉伸应力,裂纹多会在此处萌生,且以层间开裂的方式失效。而在温度与机械载荷的共同作用下,冷却过程中会承受较大的拉伸应力,显著增大的轴向应力与径向应力共同作用,使垂直于TGO/BC界面的裂纹沿着界面方向扩展,从而造成陶瓷层(Top coat,TC)剥落。进一步对比分析了同相和反相加载时的应力分布,结果表明反相加载时一次循环周期内会产生拉伸平均应力,更易发生TBCs的失效。  相似文献   

20.
Sprayed Al or diffused Mg-Al layer was designed as interlayer between the thermal barrier coatings (TBCs) and Mg alloy substrate. The effects of the interlayer on the bond properties of the coats were investigated. Al layers were prepared by arc spraying and atmospheric plasma spraying (APS), respectively. Mg-Al diffused layer was obtained after the heat treatment of the sprayed sample (Mg alloy with APS Al coat) at 400 °C. The results show that sprayed Al interlayer does not improve the bond stability of TBCs. The failure of the TBCs on Mg alloy with Al interlayer occurs mainly due to the low strength of Al layer. Mg-Al diffused layer improves corrosion resistance of substrate and the bond interface. The TBCs on Mg alloy with Mg-Al diffused interlayer shows better bond stability than the sample of which the TBCs is directly sprayed on Mg alloy substrate by APS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号