共查询到19条相似文献,搜索用时 46 毫秒
1.
目前,基于FP-树的最大频繁项集挖掘算法存在的一个问题是FP-树的规模过大,遍历树需耗费大量的运行时间,并且挖掘出来的很多频繁项集是用户不感兴趣的,过多的无用频繁 模式影响了挖掘的效率。本文提出一种排序紧缩非冗余的STFP-树,以及基于STFP-树的最大目标频繁项集挖掘算法STFP-MAX。该算法在满足用户需求的基础上有效地缩小了FP--树的规模,又加快了搜索的速度,从而提高了挖掘的效率。 相似文献
2.
基于频繁项集挖掘最大频繁项集和频繁闭项集 总被引:2,自引:1,他引:2
提出了基于频繁项集的最大频繁项集(BFI-DMFI)和频繁闭项集挖掘算法(BFI-DCFI)。BFI-DMFI算法通过逐个检测频繁项集在其集合中是否存在超集确定该项集是不是最大频繁项集;BFI-DCFI算法则是通过挖掘所有支持度相等的频繁项集中的最大频繁项集组合生成频繁闭项集。该类算法的提出,为关联规则的精简提供了一种新的解决方法。 相似文献
3.
研究挖掘关联规则的一个重要工作就是找出所有的频繁项集。基于FP—tree的最大频繁项集挖掘算法要多次生成大量的FP—tree,并且需要对其多次遍历,消耗了大量的时间。针对以上缺点,提出一种基于FP—tree并利用数组和矩阵技术进行优化的最大频繁项集挖掘算法(Mining Maximal Frequent Itemset。简称MMFI),它既减少创建FP—tree的数量,又节省遍历FP—tree的时间,实验证明本算法是有效的。 相似文献
4.
频繁项集挖掘算法研究 总被引:2,自引:0,他引:2
频繁项集挖掘是许多数据挖掘任务中的关键问题,也是关联规则挖掘算法的核心,所以提高频繁项集的生成效率一直是近几年数据挖掘领域研究的热点之一.本文以频繁项集挖掘算法的搜索方式和计数方式为主线,分析频繁项集挖掘中的代表性算法及其中的关键技术和方法,对近年来相关研究的新进展做了介绍和评述,并指出了未来的研究方向. 相似文献
5.
任亚洲 《数字社区&智能家居》2007,3(16):1066-1068
频繁项集挖掘算法是关联规则挖掘问题的关键,是数据挖掘领域的一个研究热点.自从Apriori算法提出至今,学者提出来大量的关于频繁项集挖掘的算法.本文按照挖掘方式将这些算法分成三类,即宽度优先、深度优先、宽度和深度相结合,并对每类算法进行了全面的综述及深入的分析,并给出了以后的研究方向. 相似文献
6.
FP-growth算法用于关联规则挖掘分成两个阶段:构建频繁模式树和进行频繁模式挖掘;对这两个阶段分别进行改进,若项头表中存在同频度的频繁项,在构建FP-tree的过程动态调整其位置,构建压缩的最优化FP-tree,提出了IMFP-tree算法。在进行频繁模式挖掘阶段,提出CFP-mine算法,CFP-mine算法采用一种新方法构建条件模式基,且采用组合方式挖掘频繁项集,有别于传统FP-growth算法的挖掘过程,理论上证明和实验验证本算法的正确性和高效性。 相似文献
7.
提高频繁项集挖掘算法的效率是关联规则挖掘研究的一个重要内容。通过对不产生候选项频繁项集挖掘算法的分析,从子集的划分和局部频繁项集挖掘出发,提出了一种提高频繁项集挖掘算法效率的实现方法。实验表明,该方法对提高频繁项集挖掘算法的效率是有效的。 相似文献
8.
基于FP树的全局最大频繁项集挖掘算法 总被引:12,自引:1,他引:12
挖掘最大频繁项集是多种数据挖掘应用了更新最大频繁候选项集集合,需要反复地扫描整个数据库,而且大部分算法是单机算法,全局最大频繁项集挖掘算法并不多见.为此提出MGMF算法,该算法利用FP-树结构,类似FP-树挖掘方法,一遍就可以挖掘出所有的最大频繁项集,并且超集检测非常简单、快捷.另外MGMF算法采用了分布式PDDM算法播报消息的思想,具有很好的拓展性和并行性.实验证明MGMF算法是有效可行的. 相似文献
9.
FP-growth算法是挖掘频繁项集的经典算法,它利用FP-树这种紧凑的数据结构存储事务数据库与频繁项集挖掘相关的全部信息,但对于挖掘加权频繁项集并不合适。分析了现有加权频繁项集挖掘算法中存在的问题,并对FP-树进行改进,构造新的加权FP-树,提出了有效挖掘加权频繁项集的算法。最后举例说明了算法的挖掘过程,并通过实验验证了算法的有效性。 相似文献
10.
针对最大频繁项目集挖掘算法(DMFIA)当候选项目集维数高而最大频繁项目集维数较低的情况下要产生大量的候选项目集的缺点,提出了一种改进的基于频繁模式树(FP-tree)结构的最大频繁项目集挖掘算法--FP-MFIA。该算法根据FP-tree的项目头表,采用自底向上的搜索策略逐层挖掘最大频繁项目集,从而加速每次对候选集计数的操作。在挖掘时根据每层的条件模式基产生维数较低的非频繁项目集,尽早对候选项目集进行剪枝和降维,可大量减少候选项目集的数量。同时在挖掘时充分利用最大频繁项集的性质,减少搜索空间。通过算法在不同支持度下挖掘时间的对比可知,算法FP-MFIA在最小支持度较低的情况下时间效率是DMFIA以及基于降维的最大频繁模式挖掘算法(BDRFI)的2倍以上,说明FP-MFIA在候选集维数较高的时候优势明显。 相似文献
11.
12.
基于改进FP-树的最大项目集挖掘算法* 总被引:1,自引:0,他引:1
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题。FP-growth算法是目前最有效的频繁模式挖掘算法之一,其在挖掘最大项目集时要递归生成大量的条件FP-树,存在时空效率不高的问题。于是结合改进的FP-树,提出了一种快速挖掘最大项目集的算法。该算法利用改进的FP-树是单向的且每个节点只保留指向父节点的指针,可以节约大量的存储空间;同时引入项目序列集和它的基本操作,使挖掘最大频繁项目集时不生成含大量候选项目的集合或条件FP-树,可以快速地挖掘出所有的最大频繁项目集。实例分析证明所提出的算法是可行的。 相似文献
13.
目前已提出了许多频繁项集更新算法,但是它们往往需要至少扫描一次原数据库,且会丢失一些重要规则。为此,文章提出了一种新的快速更新频繁项集算法CUFIA(Classifying Update Frequent Itemsets Algorithm),该算法通过对新增事务数据分区后快速逐一扫描,获得频繁项集,并将它们归入3个不同的类别,从而不需要扫描原数据库,便可有效地挖掘出其中的频繁项集,且不丢失重要规则。研究表明,该算法具有很好的可测量性。 相似文献
14.
基于FP-tree的最大频繁项目集挖掘算法 总被引:1,自引:0,他引:1
最大频繁项目集挖掘是数据挖掘领域最重要的基本问题之一,在分析已有算法的基础上提出了FP-MMFI算法,它是对FP-growth算法在最大频繁项目集挖掘上的扩展.提出了频繁路径的概念,用它可以有效地对FP-tree进行压缩和缩小搜索空间,同时使用投影的方法对超集检测进行了优化,减少了项目匹配的次数.最后实验结果表明,该算法在性能上优于已有的同类算法. 相似文献
15.
在理解现有的最大长度频繁项集挖掘问题的定义,探索最大长度频繁项集的几个具体应用后,提出了一种新的基于FP-tree(Frequent Pattern tree)结构的最大长度频繁项集挖掘方法——MLFI算法。该算法仅对初始的FP-tree实现遍历操作,从而完成对最大长度频繁项集的挖掘。在算法整个执行过程中,仅用到了一棵初始的FP-tree。理论分析和实验证明,该算法加快了挖掘速度,提高了挖掘效率。 相似文献
16.
17.
Discovery of maximum length frequent itemsets 总被引:1,自引:0,他引:1
The use of frequent itemsets has been limited by the high computational cost as well as the large number of resulting itemsets. In many real-world scenarios, however, it is often sufficient to mine a small representative subset of frequent itemsets with low computational cost. To that end, in this paper, we define a new problem of finding the frequent itemsets with a maximum length and present a novel algorithm to solve this problem. Indeed, maximum length frequent itemsets can be efficiently identified in very large data sets and are useful in many application domains. Our algorithm generates the maximum length frequent itemsets by adapting a pattern fragment growth methodology based on the FP-tree structure. Also, a number of optimization techniques have been exploited to prune the search space. Finally, extensive experiments on real-world data sets validate the proposed algorithm. 相似文献
18.
传统的关联规则挖掘研究事务中所包含的项与项之间的关联性,而负关联规则挖掘不仅要考虑事务中包含的项,还要考虑事务中不包含的项。给出了完全负关联规则的定义,提出一种基于树的算法Free-PNP,通过此算法挖掘数据库中的负频繁模式,继而得到所要挖掘的完全负关联规则。通过实验验证了算法的有效性。 相似文献
19.
数据挖掘中的关联分析技术旨在发现大量数据项集之间有趣的关联关系,其核心问题是寻找频繁项集。针对传统的基于矩阵的关联挖掘算法中矩阵规模和事务数据库大小相关,在处理超大型事务数据库时,仍会存在内存瓶颈的问题,提出了一个矩阵规模和事务数据库大小无关、通过矩阵约束预挖掘后验证的频繁项集发现算法。实验结果显示,该算法提高了频繁项集的挖掘速度。 相似文献