首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
采用单质钨粉、钴粉和硼粉结合反应硼化烧结法制备了WCoB基金属陶瓷,研究了WCoB基金属陶瓷在烧结过程中的物相转变和尺寸变化,烧结温度对其力学性能和显微组织的影响。结果发现:随着烧结温度的升高,材料物相逐渐由单质相变为二元硼化物相和三元硼化物相,并且材料的尺寸先发生细微收缩,再在硼化反应过程中逐渐增加,最后在液相烧结过程中逐渐减小;随着烧结温度的升高,WCoB基金属陶瓷的抗弯强度和硬度先增加后减小,在1420℃达到最大,分别为1470 MPa和84.6HRA,显著提高了WCoB基金属陶瓷的抗弯强度。  相似文献   

2.
以NbC和无定形B粉为原料,采用放电等离子烧结(SPS)法在2000℃/50 MPa条件下制备B4C-NbB2复相陶瓷,研究摩尔分数为0.1的TiC或ZrC替代NbC对复相陶瓷物相组成、致密度、显微结构和力学性能的影响。结果表明:以0.1的TiC或ZrC替代NbC后,反应烧结形成的TiB2,ZrB2可与NbB2分别固溶形成Nb0.9Ti0.1B2,Nb0.9Zr0.1B2相。Ti, Zr固溶可有效提升复相陶瓷的烧结致密度,细化组织,获得优异的力学性能,且Zr固溶产生的效果更佳。B4C-Nb0.9Zr0.1B2复相陶瓷的致密度、三点抗弯强度、维氏硬度和断裂韧度分别为99.5%,676 MPa, 31.0 GPa和5.5 MPa·m1/2。致密...  相似文献   

3.
研究了以聚乙烯亚胺 (PEI) 为分散剂,ZrB2粉体在水相中的分散性能. 结果显示ZrB2的等电点在pH为5.7,加入PEI后的等电点移到pH为11.5. 以PEI为分散剂,在pH为8.0处制备了固含量达45vol%的ZrB2-20vol%SiC陶瓷浆料. 采用注浆成型方法制备了相对密度为53%的ZrB2-SiC陶瓷坯体,并对其进行了无压烧结,同时研究了硼粉为烧结助剂对其致密化及性能的影响. 结果表明:硼粉为烧结助剂,实现了ZrB2-SiC陶瓷的完全致密化的同时,也降低了ZrB2-SiC陶瓷的烧结温度,2100℃烧结3h后的陶瓷维氏硬度为(17.5±0.5)GPa,弯曲强度为(406±41)MPa,断裂韧性为(4.6±0.4)MPa·m1/2.  相似文献   

4.
利用氧化铝的颗粒增强作用, 采用常规烧结法制备了氧化铝改性钾长石牙科陶瓷. 通过实验确定了钾长石复合陶瓷的最佳烧结工艺, 分析了工艺条件对烧结效果、可加工性、显微硬度和抗弯强度等性能的影响. 用XRD、SEM对钾长石复合材料进行了表征. 研究表明: 添加氧化铝可以提高钾长石的烧结温度, 当Al2O3添加量为20wt%时, 其最佳烧结温度为1200℃, 相对密度达97.9%. 此外, 添加氧化铝可以显著改善钾长石陶瓷的性能, 当Al2O3添加量为5wt%时, 钾长石瓷的磨削率达到最大, 当Al2O3添加量为20wt%时, 钾长石瓷的显微硬度提高了26.9%. 并且随着氧化铝添加量的增加, 钾长石陶瓷的抗弯强度逐渐增强.  相似文献   

5.
以两种不同配比Y2O3/Al2O3 (A, 2:3; B, 3:1, 总量15 wt%)为烧结助剂, 通过添加不同质量分数的SiC粉体,反应烧结制备了高强度的氮化硅/碳化硅复相陶瓷。并对材料的相组成、相对密度、显微结构和力学性能进行了分析。结果表明: 在1700℃保温2 h情况下, 烧结助剂A 与B对应的样品中α-Si3N4相全部转化为β-Si3N4; 添加5wt% SiC, 烧结助剂A对应样品的相对密度达到最大值94.8%, 且抗弯强度为521.8 MPa, 相对于不添加SiC样品的抗弯强度(338.7 MPa)提高了约54.1%。SiC能有效改善氮化硅基陶瓷力学性能, 且Si3N4/SiC复相陶瓷断裂以沿晶断裂方式为主。  相似文献   

6.
通过高能球磨技术制备了Fe78Si13B9磁性非晶合金粉体,采用XRD和DSC分析了Fe78Si13B9非晶合金粉体的相组成、玻璃转变温度Tg、开始晶化温度 Tx 和晶化峰温度Tp;利用放电等离子烧结(SPS)技术在不同烧结温度下制备了块体磁性非晶纳米晶合金试样,利用XRD、SEM、Gleeble3500、VSM等分析了不同烧结温度下烧结块体试样的相转变特性、微观形貌、力学性能和磁学性能。结果表明,在500 MPa的烧结压力下,随着烧结温度的升高,烧结试样中的非晶相开始逐渐晶化,烧结试样的致密度、抗压强度、微观硬度、饱和磁化强度均显著提高;在500 MPa的烧结压力和823.15 K的烧结温度下,获得了密度为6.6 g/cm3,抗压强度为1500 MPa,饱和磁化强度为1.3864 T的非晶纳米晶磁性材料。  相似文献   

7.
热压烧结TiB2陶瓷的显微结构和力学性能研究   总被引:1,自引:0,他引:1  
以Y2O3-Al2O3为烧结助剂,通过热压制备了TiB2陶瓷,研究了烧结温度、烧结时间和晶化处理对材料的显微结构和力学性能的影响.实验结果表明,随着烧结温度的升高,烧结体失重增加,其抗弯强度和断裂韧性降低;烧结时间延长,其显微结构的均匀性降低,对力学性能不利.晶粒直径对TiB2陶瓷的力学性能有重要影响.晶化处理能够导致晶界拆出YAG相,从而提高TiB2陶瓷的高温抗弯强度.  相似文献   

8.
本工作以石英玻璃粉作为基体材料, 白刚玉粉作为矿化剂, 金属Al粉作为添加剂, 制备了氧化硅基陶瓷型芯。研究了不同含量金属Al粉对氧化硅基陶瓷型芯收缩率、物理性能、显微组织和相组成的影响。研究结果表明, 在型芯烧结过程中, 金属Al粉受热氧化形成Al2O3, 伴随着体积膨胀和重量增加, 可以抑制陶瓷型芯的烧结收缩和铸造收缩。Al粉对烧结过程中的方石英析晶无明显抑制作用, 铸造过程中由于型芯骨架结构的松散程度增加, 型芯的高温抗变形能力降低。当铝粉含量为1wt%时, 陶瓷型芯综合性能良好, 三维方向的烧结收缩率分别为0.01%、0.03%、0.03%, 气孔率为28.58%, 挠度为0.57 mm, 抗弯强度为12.1 MPa。制备的陶瓷型芯能够满足高温合金定向凝固需求, 并有望能提高空心涡轮叶片的内腔尺寸精度。  相似文献   

9.
通过粗细碳化硅粉体的颗粒级配实现了致密固相烧结碳化硅(S-SiC)陶瓷的增强增韧, 系统研究了粗粉(~4.6 µm)加入量对烧结试样的致密化、微结构与力学特性的影响。结果表明: 当粗粉加入量不超过75wt%时, 可制备出相对密度≥98.3%的致密S-SiC陶瓷, 烧结收缩率低至14.5%;引入的粗粉颗粒产生钉扎作用, 显著抑制了S-SiC陶瓷中异常晶粒生长, 形成细小的等轴晶粒, 进而提高了S-SiC陶瓷的抗弯强度。同时, 粗粉颗粒的引入导致S-SiC陶瓷的断裂方式由穿晶断裂转变为穿晶-沿晶复合断裂, 使得S-SiC陶瓷的断裂韧性增强。对于粗粉引入量为65wt%的S-SiC陶瓷, 抗弯强度与断裂韧性分别为(440±35) MPa与(4.92±0.24) MPa•m1/2, 相比于未添加粗粉的S-SiC陶瓷, 分别提升了14.0%与17.1%。  相似文献   

10.
以硼热/碳热还原合成高熵二硼化物粉体为原料,在2000℃/单轴加压50 MPa条件下,经10分钟放电等离子烧结,成功制备了含有~2 vol%的氧化物和~1 vol%气孔的高熵(Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)B2陶瓷(HEBs).经研究确认,其中残留氧化物是固溶少量硼和碳的m-(Hf,Zr)O2.室温下HEBs的弹性模量、维氏硬度和断裂韧性分别为508.5 GPa、17.7±0.4 GPa和4.2±0.2 MPa m1/2.烧结得到的HEBs具有优良的抗弯强度,特别是其高温强度.HEBs在室温、1600和1800℃下的四点抗折强度分别为400.4±47.0 MPa、695.9±55.9 MPa和751.6±23.2 MPa.对1800℃下断裂的HEBs样品进行了失效分析,在其拉伸和断裂面附近区域,仅在裂纹尖端和孔隙边缘发现了数量有限的位错线的存在,没有观察到位错运动的痕迹.本研究首次报道了高熵...  相似文献   

11.
采用粉末冶金法制备NiFe2O4纳米粉增韧NiFe2O4陶瓷铝电解惰性阳极, 研究了NiFe2O4纳米粉添加量对NiFe2O4陶瓷惰性阳极烧结行为和材料性能的影响。通过线收缩和SEM对NiFe2O4陶瓷的烧结性能和显微结果进行分析。研究结果表明: 随着NiFe2O4纳米粉添加量的增加, 烧结收缩程度逐渐增大, 烧结致密化开始温度和烧结初期活化能逐渐降低, 添加量为40%时试样从900℃开始大幅度收缩, 烧结初期表观活化能下降到291.43 kJ/mol。NiFe2O4陶瓷惰性阳极的体积密度、抗弯强度和断裂韧性随NiFe2O4纳米粉添加量的增加均呈现先上升后下降的变化趋势, 气孔率和静态腐蚀率呈先下降后上升的趋势, 均在30%达到极值, 断裂韧性达到最大值3.12 MPa•m1/2, 是未添加纳米粉试样的2.14倍。NiFe2O4纳米粉的添加能够明显增强晶界结合强度, 降低陶瓷材料气孔率, 从而提高断裂表面能实现增韧作用。  相似文献   

12.
将TiH2、Al-V粉末压制成型后进行真空烧结,制备出Ti6Al4V(TC4)合金,使用XRD、金相和SEM断口形貌观测以及力学性能测试等手段对其表征,研究了烧结温度对合金力学性能的影响。结果表明:烧结样品由密排六方α-Ti和体心立方β-Ti双相组成,其形貌呈等轴、网篮或板条(片状、针状)状,随着烧结温度的提高和保温时间的延长等轴组织减少,片状组织和针状组织增加且其组织粗化,在1150℃烧结的样品具有较好网篮结构组织;用该方法可制备相对密度为96.9%~99.6%、抗拉强度为719.3~914.1 MPa、延伸率为6.2%~9.4%、硬度为313.2~364.8HV的TC4合金试样;在1150℃保温1.5 h的样品性能较好,其抗拉强度最高(914.1 MPa),对应的延伸率和硬度分别为7.6%和355.5HV;用纯TiH2粉末烧结样品的断口呈韧性断裂;加入合金元素的样品其断口逐渐由韧性断口变为韧性和脆性混合的断口,其强度提高、延伸率下降。  相似文献   

13.
以高能球磨机械合金化制得的WC-40%Al2O3复合粉末为原料,采用二步热压烧结法制备复合块体。首先将粉末坯体在压力条件下加热到较高的温度 T1,获得相对致密的坯体结构,此时存在临界的可收缩气孔,然后将其保温在一个相对较低的温度 T2,通过低温保温实现致密化。由于烧结过程温度相对较低,晶粒长大被有效抑制。采用XRD、SEM、扫描探针(SPM)对复合材料的物相、微观结构进行表征,并进行正交实验分析第二步烧结温度以及保温时间对复合块体微观组织和力学性能影响。结果表明:当 T1=1600 ℃、T2=1450 ℃保温6 h时,WC-40%Al2O3复合材料成形致密度达到99.03%,维氏硬度和断裂韧性分别为18.36 GPa和10.4 MPa·m1/2,抗弯强度为1162.1 MPa.  相似文献   

14.
以聚硼硅氮烷(PBSZ)为前驱体,SiBNC纤维(SiBNCf)为增强纤维,采用前驱体聚合物裂解转化与热压烧结技术相结合的方法制备了SiBNCf/SiBNC陶瓷复合材料。在800~1 500℃空气气氛下非等温氧化1~3h,研究了SiBNCf/SiBNC的氧化演变机制及氧化动力学行为。采用SEM、XRD研究了SiBNCf/SiBNC陶瓷复合材料氧化实验前后的微观形貌、物相,采用阿基米德体积排水法和三点弯曲测试法分析了复合材料的密度、孔隙率及力学性能。结果表明:SiBNCf/SiBNC陶瓷复合材料具有优异的抗氧化性能和高温稳定性,生成的氧化膜能有效阻隔氧气的进入,并且有效填补了SiBNCf/SiBNC复合材料的裂纹及孔洞缺陷,具有高温自愈合行为。SiBNCf/SiBNC复合材料氧化后密度提高,这能大幅度提高其三点弯曲强度,当密度从1.67g/cm3提高到1.86g/cm3时,气孔率下降41%,弯曲强度从7.51 MPa提高到26.54 MPa。  相似文献   

15.
镁铝尖晶石透明陶瓷是典型的结构功能一体化材料, 具有优异的光学和机械性能。实验合成了颗粒细小、均匀的单相MgO·1.5Al2O3陶瓷粉末, 并且利用XRD全谱拟合软件Fullprof和尖晶石位置分配程序SIDR两步法确定其晶体结构为(Mg0.46Al0.54)IV[Mg0.26Al1.640.09]VIO4。再通过真空无压烧结结合热等静压烧结制备出了高性能的透明陶瓷, 热等静压18 MPa下1850℃烧结4 h所得样品的致密度达到99.75%, 厚度为2 mm的烧结样品可见光透过率达到65%, 红外波段透过率达到80%以上, 维氏硬度为(12.75±0.12) GPa, 杨氏模量为277 GPa。  相似文献   

16.
以硝酸钇(Y(NO3)3)和氯化铪(HfCl4)为原料, 乙二胺四乙酸(EDTA)作为燃剂, 采用燃烧法制备了粒径为50nm左右的纯相铪酸钇粉体. 粉体经1200℃煅烧后高能球磨15h, 然后在200MPa条件下进行冷等静压成型, 素坯尺寸为20mm×2.5mm, 最后采用真空烧结(1850℃保温6h), 制备出可见光波段直线透过率为50%的铪酸钇透明陶瓷. 研究了真空烧结温度对样品透过率和显微结构的影响, 当烧结温度高于1850℃时, 温度对于透过率影响不是很明显; 随着烧结温度的升高, 样品的晶粒尺寸增大.  相似文献   

17.
以α-Si3N4为原料, Y2O3为烧结助剂, 在三种不同的氮气压力(0.12、0.32和0.52 MPa)下烧结制备了多孔氮化硅陶瓷。研究了氮气压力对氮化硅的烧结行为、显微组织和力学性能的影响, 分别通过SEM观察显微组织并统计晶粒的长径比, 通过XRD对物相进行分析, 并对烧结试样进行三点弯曲强度测试。随着氮气压力的提高, 多孔陶瓷的线收缩率降低、气孔率提高, 这是由于低熔点的液相中N含量随氮气压力的提升而增加, 导致了液相粘度提高, 抑制陶瓷致密化。随着氮气压力的提高, 组织中的棒状β-Si3N4生长良好, 晶粒长径比增大, 其原因是高的液相粘度抑制了β-Si3N4形核, 有利于β-Si3N4生长。由于β-Si3N4棒状晶的作用, 陶瓷弯曲强度随氮气压力的升高得到改善, 但是气孔率的升高降低陶瓷的强度。在0.52 MPa的氮气压力下烧结的多孔陶瓷气孔率达58%, 弯曲强度为140 MPa。  相似文献   

18.
以B2O3、Al、石墨和B4C粉体为原料, 采用反应-热压烧结工艺在1800℃/35 MPa的烧结条件下制备了致密的碳化硼基复相陶瓷, 对复相陶瓷的显微组织、物相组成、硬度、抗弯强度以及断裂韧性进行了观察与测试, 采用7.62 mm口径的穿甲弹分别对约束状态下和自由状态下的复相陶瓷靶板进行了剩余穿深试验(DOP), 并以AZ陶瓷和B4C陶瓷为对比靶板, 根据剩余穿深结果计算了各自的防护系数。结果表明, 复相陶瓷的主要成分为B4C和Al2O3, 其中主相B4C约占70wt%, 第二相Al2O3约占30wt%, 由Al-B-O共同构成的复杂中间相填充在主相与第二相之间; 复相陶瓷的密度、硬度、抗弯强度和断裂韧性分别为2.82 g/cm3, 41.5 GPa, 380 MPa和3.9 MPa•m1/2, 其中断裂韧性比纯碳化硼陶瓷提高了85.7%; 复相陶瓷的防护系数为7.34, 比AZ陶瓷和碳化硼陶瓷分别提高了11%和70%; 在约束状态下, 各个样品的防护系数比自由状态均提高10%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号