首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
介绍了武钢CSP钢包铸余渣的热态循环回收利用工艺,该工艺在LF炉对连铸钢包液态铸余渣进行了热态在线循环利用,深入分析了铸余渣循环利用过程中LF炉精炼终渣变化及其对钢水质量的影响。结果表明:通过热态渣的在线循环,LF炉造渣料及脱氧剂消耗大幅降低,其中石灰降低1.01kg/t,精炼渣降低0.21kg/t,脱氧剂铝合金降低0.20kg/t,电耗降低3.66kWh/t,回收了浇铸残余钢水,金属料消耗降低3.0kg/t。  相似文献   

2.
介绍了攀钢热态铸余渣在转炉炼钢厂的循环应用情况,分析对比铸余渣循环利用前后辅料消耗、铸余渣回收率等生产数据后表明,回收热态铸余渣有利于降低钢铁料消耗,降低辅料消耗1.11kg/t钢,同时促进了精炼快速成渣,缩短了精炼处理时间,保证了精炼钢水的质量。  相似文献   

3.
介绍了攀钢热态钢包铸余渣在转炉炼钢厂的循环应用情况,通过对转盘进行功能性改造,在转盘上实现了铸余渣的热态回收,铸余渣循环利用率达到24.1%;分析铸余渣循环利用前后的精炼处理时间、钢水质量、辅料消耗、连铸收得率等生产数据后表明,热态铸余渣循环利用后降低辅料消耗1.1kg/t,同时促进了精炼快速成渣,缩短了精炼处理时间,钢水质量稳定,降低成本4 302万元,取得良好的经济效益和社会效益。  相似文献   

4.
为了实现精炼渣循环利用,分别对精炼渣样成分、精炼渣脱硫能力及精炼渣循环利用过程中对生产工艺的影响等进行了分析。结果表明,精炼渣循环3次以内,不会影响炉渣脱硫及钢包透气性,而且不会造成钢水的回硅、回磷。目前济钢第三炼钢厂精炼渣利用率45%以上,实现浇余回收0.6 t/炉,吨钢可降低石灰消耗3.5 kg、萤石消耗1.2 kg;LF炉处理时吨钢电耗约降低3 kW.h;降低了废渣排放,取得了显著的经济效益和社会效益。  相似文献   

5.
刘敏  许海亮 《鞍钢技术》2012,(5):47-49,54
分析了鞍钢1700ASP线LF精炼工序成本的构成,指出降低精炼工序成本关键在于降低渣料消耗和电能、电极消耗.通过优化渣料配比和用量,采用降低钢水传搁时间、减少了周转罐投入数量、制定合理的加热制度和加强操作等措施,缩短了加热时间,渣料消耗降低了3 kg/t钢,电能消耗减低了3.01 kWh/t钢,电极消耗降低了0.04 kg/t钢,LF精炼工序成本降低了3.82元/t钢.  相似文献   

6.
通过对LF精炼炉热态钢渣循环利用的研究,认为热态钢渣综合利用后,脱硫率差别不大、精炼钢水的质量能够保证、减少了LF炉造渣料消耗、节省了电能和电极消耗。宣钢炼钢厂180 t转炉-LF精炼炉ER70S-6品种钢生产应用,LF精炼炉热态钢渣循环利用后,脱硫率降低2.07%、渣料消耗减少1 350kg、吨钢电耗降低7.53 kW.h,平均每炉回收余钢0.78 t,取得了较好效果。  相似文献   

7.
赵成林  张宁  朱晓雷  张维维  王丽娟 《钢铁》2015,50(12):110-113
 LF热态渣的循环利用可减少废渣排放,降低对环境的危害。对LF热态循环渣的脱硫能力及可回收性进行了分析,热态循环渣返回LF炉和转炉参与冶金反应后,可大幅降低渣料消耗,LF炉每罐回收热态循环渣1~1.5 t,平均节省石灰及其他助溶剂用量5 kg/t(钢),转炉每罐回收热态循环渣3~5 t,渣料消耗平均降低10~15 kg/t(钢)。采用热态循环渣配加石灰的LF炉造渣制度后,在相同的处理时间内,处理终点钢水中硫质量分数与常规处理几乎相同,同时节省了能源消耗,但必须考虑对钢水增硅、增锰的影响。热态循环渣返回转炉后导致入炉铁水温度低及吹炼过程渣量较大,因此转炉吹炼全程以低枪位操作更为适宜。在不影响生产组织的情况下,热态渣以返回转炉循环利用为最佳途径。  相似文献   

8.
王晓晶  吴杰  王军涛 《天津冶金》2011,(4):14-16,68
结合天津钢铁集团有限公司精炼炉的实际生产情况,从分析对比精炼渣循环利用前后炉渣的冶金性能、脱硫能力等方面人手,对精炼渣使用炉次的脱硫能力、辅料消耗、电极消耗等方面进行了生产数据对比分析。生产实践表明,精炼渣循环利用对精炼快速成渣、缩短精炼处理周期有显著效果。精炼渣循环利用可以降低精炼辅料消耗石灰3.36kg/t、合成渣2.10kgt、铝矾土1.31kgt、萤石0.82kgt、电极损耗降低0.11kgt、电耗降低10.38kW·h/t,通过节能减排取得了良好的经济效益和社会效益。  相似文献   

9.
介绍了LF热态精炼渣在杭州钢铁集团公司转炉炼钢厂的循环应用试验,结果显示该工艺能够保证精炼钢水的脱硫效果,且精炼钢液中酸溶铝的含量较高,钢水回收量比原工艺多了1.178t/炉,吨钢平均降低成本22.4028元,同时推广应用试验也显示该工艺在实际生产中能够保证精炼钢水的质量及降低成本。  相似文献   

10.
段建平 《特殊钢》2015,36(5):21-23
为降低AOD精炼的渣料和还原剂硅铁用量,对高铬钢液脱碳及还原过程渣碱度控制进行热力学分析,并进行45 t AOD冶炼304不锈钢造渣工艺试验。试生产结果表明,降低AOD精炼304不锈钢脱碳期炉渣碱度可减少钢水铬的氧化,同时有效减少AOD精炼渣料和还原剂消耗;AOD精炼过程石灰加入量平均从104.2 kg/t降至84.2~93.1 kg/t时,脱碳期炉渣碱度由平均13.44降低到10.64,AOD冶炼过程石灰、萤石、硅铁单耗分别平均降低14.7、5.4、4.4 kg/t,钢中Cr收得率、Ni收得率和硫含量分别为99.0%、98.3%和0.0025%。  相似文献   

11.
首钢精炼82B、40Cr、20CrMnTi、60Si2Mn等钢种采用LF循环利用热态返回渣工艺。LF使用热态还原循环渣精炼特殊钢时,补加合成渣(或活性石灰)200~400kg/炉,适当增加电石消耗量,并用铝粒、电石、硅铁粉对渣脱氧。生产实践表明,采用该工艺使精炼脱硫率达到50%以上,LF后钢水氧活度≤10×10-6,并使LF造渣料-合成渣减少5kg/t,埋弧渣减少2kg/t,冶炼成本降低7元/t。热态精炼渣具有较高的回收利用价值。  相似文献   

12.
为实现“全三脱”工艺少渣冶炼,进一步降低辅料消耗,首钢京唐开发了热态脱硫渣、液态脱碳渣及铸余渣钢直接返回利用工艺。对热态渣、钢的可回收性进行了分析,并通过工业试验验证了工艺的应用效果。结果表明,回收利用5 t的脱硫渣,脱硫剂消耗可降低30%~40%,铁水温降相对减少10~15 ℃,总渣量减少30%~40%,同时可降低铁损,减少对环境的污染;对于脱碳渣,每炉回收热态渣20 t,可节约石灰3.2 t,若铁水硅质量分数小于0.15%,脱磷炉可不加石灰,钢铁料消耗相应减少2.4 kg/t,并且可取消萤石及轻烧的使用,可实现脱磷炉零辅料消耗;对于钢包铸余,通过控制高炉出铁量,将精炼工序RH/LF/CAS产生的热态精炼渣及钢包铸余兑入半钢包,连同半钢一起兑入脱碳炉中进行冶炼,铸余钢回包次数可达到6~8次,实现液态铸余直接回收。  相似文献   

13.
精炼工序采用铝脱氧易产生钢水下流不好现象,影响生产顺行;铝脱氧的精炼成本较高,精炼周期较长.对Als没有要求的钢种,在转炉出钢过程中加小粒灰、热态精炼钢渣再利用、使用非铝基脱氧剂和根据钢中Als含量进行钙处理等措施,钢水可浇性连续11个月达到100%,缩短了精炼周期,降低了电耗、电极消耗和渣料消耗等.  相似文献   

14.
新型LF炉精炼渣的研制与应用   总被引:5,自引:0,他引:5  
根据鞍钢连铸钢水的精炼要求,在LF炉精炼渣系及成分设计的基础上,开发了一种预熔型精炼渣,并投入了生产.新型LF炉精炼渣平均用量为0.47kg/t,在其它条件不变的情况下,平均脱硫率达到64.8%,钢中夹杂物总含量平均为0.00823%,包衬寿命大于95次,冶金效果显著.  相似文献   

15.
孟兆生  王洪 《山东冶金》1999,21(2):40-43
针对从德国引进的50tUHP(EBT)电炉-LF精炼生产线在试生产中存在的工艺参数不稳定、生产效率低、消耗高及钢品种开发少等问题,莱钢特钢厂从优化生产工艺参数和稳定操作入手,通过设计合理的精炼渣系,使脱硫率提高了30%以上,轴承钢中钢的含氧量降低到2.0×10-3%以下,成本降低了35.52元/t钢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号