共查询到16条相似文献,搜索用时 46 毫秒
1.
2.
3.
针对传统灰度级-平均灰度级二维直方图区域划分存在的不足,提出了由灰度级-梯度构成改进的二维直方图区域划分方法,并给出了基于改进二维直方图的Otsu阈值法及其快速递推算法。实验结果表明:提出的改进二维Otsu法与传统二维Otsu法相比,抗噪性能好,分割所得的区域内部具有较好的一致性,获得的目标边缘更加清晰,同时减少了运行时间。 相似文献
4.
为了解决2维最小误差阈值分割法对呈偏斜分布与重尾分布的图像分割鲁棒性较差的问题,提出一种基于平均中值离差的2维最小误差阈值分割法。考虑到1维直方图呈偏斜分布和重尾分布的图像中,中值是比均值更为鲁棒的灰度级估计量,因而将2维最小误差阈值分割法中的方差用平均中值离差替代;为提高运算速度,将2维算法分解为2个1维算法。结果表明,相比2维Otsu法、2维最小误差阈值分割法等经典算法,基于平均中值离差的2维最小误差阈值分割法对1维直方图呈偏斜分布与重尾分布的图像有更准确的分割效果、更好的鲁棒性。 相似文献
5.
3维最小误差阈值分割法(3D-MET)的抗噪性很强,但计算复杂度非常高。其快速递推方法(3D-RMET)通过构建查找表去除了大量冗余操作,但其速度仍然不能满足实际工程要求。该文采用直方图降维和分级策略提出新的快速实现方法。该方法首先将3D-MET的最优阈值判别式进行分解,并给出新的阈值计算公式,将阈值搜索的空间维度从3维降到1维;然后将3维直方图进行分组和重建,进一步提高了算法处理速度。最后给出了3D-MET, 3D-RMET及本文方法的分割结果,并采用量化指标对结果进行对比分析。实验及量化对比结果表明,该文方法保持了原3D-MET法的强抗噪性,且将其时间复杂度降为O(L1/2)。与3D-RMET相比,该文方法快了6个数量级,较有效地解决了原方法时间复杂度高的问题。 相似文献
6.
7.
最小误差分割算法的图像分割性能优异,但一维的最小误差分割算法容易受到噪声的干扰。利用图像的二维直方图,二维最小误差分割算法不仅能够利用图像的灰度信息,同时利用了相邻像素之间的邻域信息,取得更加理想的分割效果。但在实际使用的过程中,二维最小误差算法采用穷尽搜索的算法运算时间长,二维直线型最小误差分割算法无法反映全局最优解,降维形式的最小误差算法复杂度高。本文将结合粒子群优化算法(PSO)将二维最小误差分割算法应用在红外图像上,大大提升了算法的求解速度,能够在实现更低对比度的红外图像分割的同时满足工程中实时检测的要求。 相似文献
8.
鉴于常用二维直方图区域直分法存在错分,最近提出的斜分法不具普遍性,而Tsallis熵与传统的Shannon熵相比,具有普适性且更为有效,本文提出了适用面更广的基于二维直方图θ-划分和最大Tsallis熵的图像阈值分割算法。首先给出了二维直方图θ-划分方法,采用四条平行斜线及一条法线与灰度级轴成θ角的直线划分二维直方图区域,按灰度级和邻域平均灰度级的加权和进行阈值分割,斜分法可视为该方法中θ=45o的特例;然后导出了二维直方图θ-划分最大Tsallis熵阈值选取公式及其快速递推算法;最后给出了θ取不同值时的分割结果及运行时间,θ取较小值时,边界形状准确性较高,θ取较大值时,抗噪性较强,应用时可根据实际图像特点及需求合理选取θ的值。与常规二维直方图直分最大Tsallis熵法相比,本文提出的方法所得分割结果更为准确,抵抗噪声更为稳健,且所需运行时间及存储空间也大为减少。 相似文献
9.
对灰度直方图呈现为双峰的图像,传统的二维直方图阈值分割方法虽然比较有效,但在灰度直方图呈现为无峰、单峰或多峰模式时,它们的分割结果较差。考虑到经过二维直方图映射得到的二维生存函数存在密度连续和形态统一等优点,本文基于图像二维生存函数提出一种快速二维累积剩余Tsallis熵阈值分割方法。该方法首先基于二维直方图构造二维生存函数,然后在二维生存函数的基础上定义计算分割阈值的二维累积剩余Tsallis熵目标函数。通过递推算法将计算目标函数的时间复杂度降为O (L2)。最后,基于递推形式的二维累积剩余Tsallis熵准则得到最优阈值向量以进行阈值分割。在26幅合成图像和76幅真实世界图像上将提出的方法与2种快速二维阈值分割方法、2种聚类分割方法以及1种活动轮廓分割方法分别在时间和误分类率(Misclassification Error,ME)2个指标下进行了比较。实验结果表明,在合成图像和真实世界图像中,相比于性能第2的方法,本文方法的时间平均缩短0.013 s,ME值平均降低0.051~0.089。提出的快速二维累积剩余Tsallis熵阈值分割方法不仅在计算效率方面优于... 相似文献
10.
Otsu法是一个常用的阈值分割方法.为了利用图像的区域信息,本文在二维Otsu法的基础上提出了曲线阈值型Otsu法,传统的二维Otsu法可以看成是该方法的一个特例.实验结果表明,对于含噪图像,它能够获得优于传统二维Otsu法的分割效果.为了减少计算量,提高分割速度,给出了一种递归算法和一种小波变换与递归算法相结合的快速算法.该递推算法只需遍历二维直方图的主对角线和一条次主对角线,与传统Otsu法的递推算法相比,搜索空间由L×L个点减少到2L-1个点. 相似文献
11.
改进的二维Otsu图像分割方法及其快速实现 总被引:12,自引:0,他引:12
通过实验和理论验证2维直方图的副对角区域的概率和不一定很小而不能忽略,因而传统2维Otsu法中关于主对角区域的概率和近似为1的假设不够合理。针对该问题,该文提出了一种改进的2维Otsu法及其快速实现。新方法舍弃了不合理的假设,通过单独计算2维直方图主对角区域概率的方法,来准确估计主对角区域中目标和背景的概率,并重新计算2维Otsu。实验结果表明,改进的2维Otsu法能够获得明显优于传统2维Otsu法的分割效果,其快速算法的计算复杂度与传统2维Otsu法的快速算法相当。 相似文献
12.
基于二维直方图的图象模糊聚类分割方法 总被引:29,自引:0,他引:29
本文提出了一个基于二维直方图的图象分割模糊聚类方法,它除了考虑象素点的灰度信息外还考虑了象素点与其邻域的空间相关信息,利用模糊C均值(FCM)聚类算法得到象素点的隶属度,并由各象素点的隶属度实现图象分割.实验结果表明,本文提出的方法与Otsu法和熵函数法相比,错分的象素点数大约减少了四分之三. 相似文献
13.
Otsu自适应阈值法是一种经典的图像阈值分割方法,在其基础上发展起来的2维Otsu法及其改进算法由于存在计算(或空间)复杂度较高、抗噪能力差、难以扩展到多阈值等不足而制约了其应用。该文针对2维Otsu法的不足,将噪声点的出现视为小概率事件,用噪声点的邻域均值代替其灰度值,将噪声点转换为目标(或背景)像素,减少了图像中的噪声点数量;继而直接采用1维Otsu法进行分割,以较小的代价获得良好的分割效果。算法分析及测试实验表明:与现有2维Otsu法相比,该算法在复杂度、抗噪性、多阈值扩展性等方面都有明显改善。 相似文献
14.
15.
针对图像分割是典型的结构不良问题,将图谱划分理论作为一种新型的模式分析工具应用到图像分割并引起广大学者关注。考虑到现有的图谱阈值法中图权计算方法采用基于欧氏距离的幂指数函数导致其计算量过大的不足,首先采用基于欧氏距离的分式型柯西函数代替基于欧氏距离的幂指数函数提出图权计算的新方法,其次将其应用基于图谱划分测度的图像阈值分割算法中并得到一种改进的图谱阈值分割方法。实验结果表明,该方法的计算量小且对目标和背景相差比例较大的图像能获得满意的结果。 相似文献