共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
从沸腾换热特性及其影响因素、沸腾汽泡行为和沸腾换热关联式等方面综述了添加表面活性剂的沸腾换热强化研究现状。现有研究指出界面吸附、分子结构、粘度、溶解特性等因素对表面活性剂溶液沸腾换热的作用机制与表面活性剂种类和溶液浓度密切相关,但是蒸汽携带活性剂、非离子活性剂浊点、加热方法、系统压力、参数耦合等因素对表面活性剂溶液沸腾换热的影响规律的研究还需深入开展。在沸腾汽泡行为方面,表面活性剂溶液沸腾汽泡行为与水存在较大差异且与活性剂种类有关,表面活性剂溶液沸腾汽泡行为的理论研究还需加强。此外,现有文献建立的表面活性剂溶液沸腾换热模型及关联式存在验证所用的实验数据较少、模型参数难以确定等不足。最后,在总结现有研究进展的基础上对表面活性剂溶液沸腾换热的后续研究工作提出了建议。 相似文献
3.
本文对R134a在水平微细管内的流动沸腾进行了实验研究。实验测试段选用了内径为1 mm、2 mm、3 mm共3种不同的水平光滑不锈钢管,实验的饱和温度为5~30℃,热流密度为2~70 k W/m2,流量范围为200~1500 kg/(m2·s)。实验结果表明:相同条件下,干涸前2 mm管较3 mm管换热系数平均增幅为11.6%,1 mm管较2 mm管换热增幅为26.3%,1 mm管径换热系数比3 mm管径平均增大40.8%。随着管径的减小,换热系数在更低的干度开始减小,质量流速和强制对流蒸发作用对换热系数的影响变小,热流密度的影响依然显著;塞状流和弹状流区域减小,泡状流和环状流区域增大。 相似文献
4.
对3根双侧强化管在饱和温度为8℃工况下进行了水平管外R417A沸腾换热特性研究。采用Wilson热阻分离法得到管外沸腾表面传热系数,并对实验结果进行了热阻分析。实验结果表明:管内轧制出0.32~0.34 mm的螺旋槽道,可以使管内对流传热系数提高到光管Gnielinski公式计算值的2.524~2.658倍。相同管型的强化换热表面,其沸腾传热系数随壁面温差变化的趋势相似,肋密度42fpi的E30管沸腾传热系数比50fpi的E32管大4.5%,表明沸腾传热系数的大小及变化趋势与肋密度(孔隙直径)及管型密切相关。双侧强化管外R417A沸腾换热,管外热阻约占总热阻的70%,管外仍需进一步强化,才能明显提高总体传热性能。R417A在强化管外沸腾传热系数仅为近似条件下其主要组分R134a的三分之一,表明混合工质沸腾换热与纯工质有较大差异。 相似文献
5.
制冷剂混合物水平微翅管内流动沸腾研究综述 总被引:1,自引:0,他引:1
本文对目前国内外制冷剂混合物在水平微翅管内流动沸腾特性的实验研究进行了综述。讨论了混合物在微翅管内流动沸腾的强化特性、替代制冷剂换热性能的比较和润滑油对换热的影响。同时,对进一步的研究提出了一些建议。 相似文献
6.
概述目前国内、外空调制冷行业中普遍采用的水平微肋管内冷凝换热特性的实验关联式及其影响因素,指出正确地选用实验关联式,为空调制冷行业中冷凝器的优化设计及其制造提供可靠的依据. 相似文献
7.
本文进行了微肋管内R134a两相流动冷凝换热实验,分析了实验工况、微肋管结构参数对管内压降的影响,并使用关联式对管内压降进行了预测。实验结果显示:管内压降与质量速率、肋片螺旋角呈正相关,与冷凝温度、冷却水雷诺数Re呈负相关; Cavallini et al关联式、Haraguchi et al关联式、Pierre关联式可实现对管内压降的高精度预测,预测平均误差均在17%以内,而Goto et al关联式高估了管内压降;参考Goto et al关联式拟合机理,基于微肋管内R134a压降实验数据,对气相/液相折算系数Φv/Φl与参数Xtt之间关系进行重新拟合,进而提出适用于预测管内压降的关联式,经验证:新关联式预测误差在±30%以内,预测平均误差小于10%。 相似文献
8.
窄通道强化沸腾换热的方法综述 总被引:2,自引:0,他引:2
利用通道强化沸腾换热是一种既经济又有效地强化传热方法。从核沸腾传热的微液膜蒸发机理出发,通过分析认为;利用窄通道强化沸腾换热,实质是对液膜蒸发过程的强化,并指出扩大微膜面积可强化沸腾换热。针对窄通道沸腾换热临界热负荷小的事实,提出了可通过及时补液的克服方法。 相似文献
9.
采用切应力输运湍流模型(SST k-ω)分别对光滑矩形通道、连续肋矩形通道和间断肋矩形通道在五种典型工况下的流动换热进行了三维数值模拟研究。结果表明,基于SST k-ω湍流模型的光滑矩形通道流动阻力和换热系数模拟结果与经验公式计算结果可以较好符合,验证了本文所采用的数学模型的预测能力。在本文所研究的雷诺数(Re=8000~15000)范围内,连续肋和间断肋通道阻力较光滑通道都相应增加,连续肋片通道较光滑通道阻力增加2倍以上,间断肋片通道较光滑矩形通道阻力增加4.8倍以上,且随Re的增大而增加,同时,连续肋换热能力较光滑通道提升1.1倍以上,而间断肋较光滑通道换热能力提升约1.7倍以上。通过采用综合热学性能参数,对强化传热和阻力减小这两个因素进行评估,分析表明间断肋的综合热学性能明显优于连续肋。 相似文献
10.
本文选用表面传热系数为评价指标,对外径为6.35 mm的微肋管内R134a两相流动冷凝换热特性进行实验研究,分析了水力工况、测试管结构参数等对管内表面传热系数的影响,还选用Cavallini et al.关联式、Miyara et al.关联式和Oliver et al.关联式对微肋管内表面传热系数进行预测,发现Cavallini et al.关联式对微肋管内换热性能的预测能力最好,关联式预测值与实验值的平均误差、标准误差分别为-21.47%和21.94%。虽然Miyara et al.关联式预测值与实验值的平均误差、标准误差分别为16.21%、30.65%,但两者之间的误差范围为-47.12%~82.32%,说明在部分工况下Miyara et al.关联式对管内换热性能的预测仍存在较大误差。三个关联式中,Oliver et al.关联式的预测能力最差,预测值与实验值之间平均误差高达-54.93%,因此,实验根据现有实验数据对Oliver et al.关联式进行了修正,修正Oliver et al.关联式对管内换热性能的预测能力大大提高,预测值与实验值的平均误差、标准误差分别为-2.37%和10.77%。 相似文献
11.
12.
两种池沸腾强化换热管的传热性能实验研究 总被引:1,自引:0,他引:1
对两种用于池沸腾换热的强化管在蒸发温度为5℃的工况下进行了水平管外传热性能的实验研究.两种管子为管内外双侧强化管,管外表面同属于TURBO-B类的强化换热管,但表面形状有区别.利用威尔逊图解法确定这两种管型的管内外换热系数的关联式,同时,根据实验测得的数据对这两种管型的换热性能进行比较.结合金相显微镜拍摄的外观形状,分析尺寸结构对强化换热管的换热性能的影响.结果得出:在相同工况下,准三角形形状的管内螺纹换热性能要比梯形好,且管内螺纹数越多,换热性能越好;在一定热流密度范围内,管外换热系数随着热流密度的增加而变大,这主要与管子外表面结构的凹穴半径、凹穴开口尺寸、次级表面通道的宽度和形状等因素有关,且翅顶表面刻画的浅槽有利于池沸腾换热. 相似文献
13.
水平强化管外池沸腾换热性能实验研究 总被引:1,自引:0,他引:1
以目前广泛使用的R22为工质,对Turbo-BⅡ管管内外换热性能进行了实验研究;管内以水为加热介质;在恒定热流密度与饱和压力不变条件下,改变进水水温和流速得到一系列实验数据,再通过威尔逊(Wilson)图解法同时得到管内外换热关联式;给出了不同管内流速时管外沸腾换热性能对比图;Turbo-BⅡ管管外沸腾换热性能比普通低翅管提高了1.6-2.5倍;在实验条件范围内,Turbo—BⅡ管内热阻是控制热阻。 相似文献
14.
R404A在小管径管内的流动沸腾换热过程是一个极其复杂的物理现象。目前对R404A换热特性的研究大多集中在大管径上,对小管径换热特性的研究较少,且对不同实验现象的机理分析也不尽相同。因此R404A在小管径管内换热特性的理论研究仍需要大量具体的实验数据来支撑。本文通过搭建小管径内螺纹铜管蒸发实验台,研究R404A在小管径管内流动沸腾换热过程中不同热流密度、不同蒸发干度、不同质流密度、不同饱和温度对表面传热系数的影响,研究表明:热流密度、干度、质流密度、饱和温度均对R404A在小管径管内换热特性的影响较大,干涸现象发生前后这些因素产生的影响也不同。此外,这些因素对管内干涸现象发生的起始干度、沸腾主要换热形式以及干涸现象是否发生具有直接影响。 相似文献
15.
本文对R290在5mm小管径内的流动沸腾换热特性进行实验研究,重点研究热流密度、质量流率及饱和温度对沸腾换热表面传热系数的影响。实验工况为:热流密度10~60 k W/m2、饱和温度15~25℃、质量流率50~200 kg/(m2·s)、干度0. 1~0. 9。结果表明:增加热流密度可实现强化换热,提高表面传热系数,使干涸现象提前发生,并加剧干涸;质量流率在低干度区间对表面传热系数的影响较小,在中干度和高干度区间表面传热系数与质量流率分别呈正相关;当热流密度较低时,在中干度区间,增大饱和温度会使表面传热系数降低;而在较高的热流密度下,增大饱和温度明显引起表面传热系数的上升。 相似文献
16.
17.
实验研究了填充泡沫金属的圆管内制冷剂与润滑油混合物流动沸腾换热特性。实验对象为两根分别填充5PPI、90%孔隙率与10PPI、90%孔隙率泡沫铜的圆管,以及相同管径的光管。实验工况为蒸发压力995kPa,质流密度为10~30 kg/(m2.s),热流密度为3.1~9.3kW/m2,入口干度0.175~0.775,油浓度为0~5%。实验结果表明:纯制冷剂工况下,泡沫金属的存在强化流动沸腾换热,换热系数最多提高185%;含油工况下,泡沫金属强化换热的效果弱化;相同工况下,更小的孔径可以提高流动沸腾换热系数,相比5PPI泡沫金属的实验数据,10PPI的泡沫金属可以使换热系数最多提高0.6倍。基于流型建立了填充泡沫金属的圆管内制冷剂与润滑油流动沸腾换热系数的预测模型,预测模型与98%的实验数据误差在±30%以内。 相似文献
18.
为实现微小空间高效散热,本文以去离子水为工质,实验研究了工质流经高度和直径均为500μm的微圆柱组成的叉排微柱群通道时的饱和沸腾换热特性,并采用高速摄像机记录了通道内不同加热功率的气液两相流型,实验参数设定质量流速为341~598.3 kg/(m~2·s),热流密度为20~160 W/cm~2,蒸气干度为0~0.2。结果表明:随着热流密度增大,局部沸腾换热表面传热系数近似单调递减。在低干度区,局部沸腾换热表面传热系数随着质量流速的增加而增大,随着蒸气干度的增加而减小;受过冷沸腾气泡影响,工质进口温度越低,局部沸腾换热表面传热系数越大;随着热流密度增大,微柱群通道流动沸腾气泡流型依次为:泡状流、环状流,且泡状流区的局部沸腾换热表面传热系数明显高于环状流区。 相似文献
19.
对R134a在水平强化管(Φ25 mm)外核态池沸腾进行了实验研究。通过Wilson图解法求得管内换热准则关系式,通过改变蒸发温度(5.6℃,0℃,-2℃,-4℃,-6℃,-8℃)和热流密度(4~55 k W/m2),得到了管外沸腾换热系数随热流密度和蒸发温度变化的规律。实验表明,管外沸腾换热系数随着热流密度和蒸发温度的升高而增加。结合实验数据,提出了一个新的管外池沸腾换热关联式,该关联式与实验数据点的偏差显示,95%的数据点的相对误差在±20%以内。 相似文献