首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于微型均质充量压燃(HCCI)自由活塞动力装置内自由活塞单次冲击过程,通过试验与数值模拟的方法,对比分析了甲烷掺混不同比例的CO_2时,混合气着火时刻、微燃烧室内的温度、压力以及装置做功能力的变化.结果表明:在初始当量比为0.5时,甲烷中CO_2的掺混使混合气着火时刻延迟、燃烧速率变慢,微燃烧室内的压力与温度峰值后移且降低,混合气体的爆燃现象得到改善.随着甲烷中CO_2掺混比的增加,混合气的着火与燃烧不断恶化,装置的做功能力不断减弱,同时装置所需的启动能量不断增加;当CO_2掺混比达到40%时,自由活塞的速度增量减少2.67 m/s,平均有效指示压力减少0.584 MPa,同时装置所需的启动能量增加至0.182 4 J.当CO_2掺混比达到58%时,混合气无法被压燃,微动力装置不对外做功.在保证装置做功能力的基础上,甲烷掺混一定比例的CO_2,微燃烧室内平均温度能够降低30~100 K,微动力装置可以降低对微燃烧室材料的依赖,实现低温燃烧.  相似文献   

2.
基于甲烷气相反应化学动力学机理,耦合甲烷在铂(Pt)表面催化反应机理对微型自由活塞式动力装置带有催化燃烧的均质充量压缩燃烧(HCCI)过程进行数值模拟研究,实现了自由活塞运动与燃烧过程耦合的计算方法.在此基础上对微燃烧室底部添加催化剂的模型与未添加催化剂的模型模拟结果进行了对比.根据H2O2质量分数变化曲线定义了微自由活塞动力装置开始着火时段.通过数值模拟发现,催化燃烧可以使着火时刻提前,压缩比减小,滞燃期缩短,燃料燃烧产生能量的使用效率提高,拓宽微自由活塞压缩均质混合气着火界限;而且得到了催化作用对微燃烧室内温度、压力等因素的影响情况.结果表明:催化作用可以降低微燃烧室内最高燃烧压力及最大压力升高率,从而降低微自由活塞动力装置运行粗暴性,使工作过程平稳.  相似文献   

3.
基于微型燃烧室内自由活塞单次压缩实现均质充量压燃(homogeneous charge compress ignition,HCCI)燃烧的可视化试验,结合甲烷的详细化学反应动力学机理及动网格技术,建立了三维动网格模型,将自由活塞运动与燃烧过程相耦合,对不同初始状态下微型燃烧室内HCCI燃烧特性进行了数值模拟,得到了不同初始温度、初始压力、当量比及混合气泄漏下的燃烧特性及动力特性的变化规律。研究结果表明:初始温度、初始压力及当量比对微型燃烧室内HCCI燃烧影响较大,随着初始温度的升高,微型燃烧室内HCCI压缩着火范围扩大,但随着初始压力的增大,压缩比降低,压缩着火范围减小,当量比的变化显著影响微型燃烧室内HCCI压缩燃烧的最高温度和最高压力,混合气泄漏主要影响膨胀过程,对动力性能影响非常显著。  相似文献   

4.
利用数值模拟计算软件,结合甲烷详细化学反应动力学机理及动网格技术,对微自由活塞动力装置中自由活塞与微燃烧壁面之间不同间隙条件下压缩着火过程进行模拟计算。计算结果表明:相同条件下,随着间隙的增大,单次压缩着火周期增长,工作频率变小,但着火时刻点基本不变;间隙大小相同的条件下,活塞初速度越大,压缩比越大,动力输出性能越差。同时,对临界压缩比随着间隙大小的变化规律进行计算,分析得出在无泄漏条件下临界压缩比值为48,微动力装置压缩比大于临界压缩比时,混合气体才能压缩着火,且随着泄漏间隙的增大,临界压缩比值也随之增大。  相似文献   

5.
为了研究微自由活塞动力装置燃烧过程及特征,搭建了燃烧过程可视化试验平台,结合高速摄像技术获得单次冲击压缩燃烧试验过程影像,分析了活塞运动特性及混合气燃烧特性。研究结果表明:混合气在微尺度空间里可以压缩着火燃烧。通过变参数试验对比,分别得出活塞初始速度、微燃烧室几何形状及活塞质量等因素对燃烧过程的影响规律。对于二甲醚与空气的混合气,研究表明存在临界压缩比,当压缩比大于18时混合气才能完全压缩燃烧。  相似文献   

6.
基于Fluent-CFD软件建立了摆臂自由运动条件下的微型摆式发动机内燃烧过程三维动态网格数值模型,采用正丁烷氧化一步反应机理模拟了三种内径的燃烧室内流动与燃烧过程,考察了燃烧室内径对系统性能的影响。结果表明:增大内径可以减小燃烧室底部区域燃料残留,促进燃烧更快完成,提高燃烧室内的峰值压力和缩短峰值出现时间,有利于提高发动机的输出功、功率密度和效率。  相似文献   

7.
基于微自由活塞动力装置(micro-free piston engine,Micro-FPE)的单次压燃过程,建立考虑自由活塞与燃烧室壁面泄漏间隙的物理数值模型;比较试验与模拟结果,验证泄漏间隙模型的正确性。在此基础上通过数值计算,研究分析泄漏间隙对Micro-FPE做功能力的影响。数值模拟结果表明:与无泄漏间隙比较,合适的泄漏间隙能够提升Micro-FPE的做功能力;存在某一个特定的泄漏间隙能使Micro-FPE的做功达到最大值。针对输出功率为100W的Micro-FPE直径3mm的微小燃烧室,在文中的计算条件下,当径向间隙为2μm时,Micro-FPE的指示功高于无泄漏间隙情况;但当径向间隙进一步增加,Micro-FPE燃烧压力升高率减小,做功能力下降;存在临界径向间隙δcrit,大于该临界径向间隙值时Micro-FPE无法着火燃烧及对外做功。  相似文献   

8.
基于丙烷燃烧化学动力学机理并考虑传热、漏气过程对微型自由活塞发动机均质充量压缩燃烧(HC-CI)过程进行数值模拟研究,结合Star-CD/Kinetics软件实现了自由活塞运动与燃烧过程耦合的计算方法,在此基础上,详细研究了不同参数下微型发动机燃烧过程压力、温度的变化规律,探讨了微发动机循环过程中传热损失和混合气泄漏对微尺度燃烧过程的影响,研究结果表明:当量比、压缩比和自由活塞频率显著影响微发动机燃烧过程,传热损失对微HCCI自由活塞发动机燃烧过程的影响不大,而混合气泄漏损失的影响比较明显.  相似文献   

9.
《动力工程学报》2017,(9):691-698
采用大涡模拟方法分析了旋流数对燃气轮机燃烧室内预混燃烧不稳定性以及NO_x生成特性的影响.结果表明:增大旋流数使得流场的扩张角增大,中心回流区范围扩大,对燃烧产物的卷吸能力增强,预混段内温度升高,高温区范围扩大,有利于燃料气流的着火与稳定燃烧,火焰长度也有所缩短;旋流数为0.7时,流场中仅存在一个进动涡核,旋流数较大时,则出现2个明显的进动涡核;增大旋流数使得涡旋周期性的脱落频率增加,破碎位置向上游移动,同时由于火焰长度缩短,热释放区域相对更为集中,从而导致燃烧室内压力脉动频率及其对应的压力峰值增大;增大旋流数也使得火焰宽度增大,峰值温度有所降低,有利于控制NO_x排放体积分数.  相似文献   

10.
均质混合气引燃(HCII)的燃烧方式融合了柴油机与汽油机的优点,具有提高发动机指示热效率、改善排放的潜力.通过光学发动机,采用高速摄影和燃烧分析系统,研究纯柴油(缸内直喷)与汽油均质混合气柴油引燃两种工作模式下柴油喷射压力对燃烧特性的影响.结果表明:随着柴油喷射压力的提高,两种燃烧模式的燃油雾化质量改善,滞燃期缩短,着火时刻提前,缸内压力和放热率峰值增大,峰值位置提前,同时着火面积增大,燃烧速率加快.在相同柴油喷射压力下,HCII燃烧模式的着火点较为分散,着火时刻相比纯柴油更早,但火焰发展初期速度较慢.纯柴油模式在各喷射压力下均有扩散燃烧特征,中、高喷射压力时扩散燃烧现象更加明显,HCII燃烧模式在低喷射压力下为预混合燃烧和扩散燃烧共存.中等喷射压力下,视窗内分布大片蓝色火焰,着火面积较大,为典型的预混燃烧.高喷射压力下,前期燃烧主要为汽油均质混合气的预混燃烧,放热率峰值点之后以柴油的扩散燃烧为主.  相似文献   

11.
针对基于燃烧的微小型动力装置存在燃烧效率低、火焰传播速度慢的问题,设计了一个可视化的、特征间距仅为0.45 mm的微尺度定容燃烧室,实验比较了0~1的掺氢比例下,丙烷/氢气/空气预混火焰在该燃烧室内的传播以及加速过程.实验发现没有掺氢时,丙烷/空气预混火焰需要在0.25 MPa初始压力下才能够传播;当掺氢比例为0.2时...  相似文献   

12.
为了合理设计微燃烧室,建立了微燃烧室内的湍流燃烧模型,采用Fluent软件对不同结构微燃烧器中甲烷/氧气的燃烧特性进行了数值模拟.甲烷/氧气的当量比为1,混合气流量为200mL/min,入口温度为300K,并比较了不同结构微燃烧室内燃烧情况的差异.计算结果表明,随着燃烧器的长度和宽度增加,燃烧室内的温度升高,甲烷的浓度下降.  相似文献   

13.
开发一款燃烧天然气的中小型地面燃气轮机燃烧室,并对该燃烧室采用单筒燃烧室压力模化试验进行燃烧特性分析.结果表明:在设计工况点,总压损失系数为3.5%,NOx排放浓度为14.5 mg/m3,CO排放浓度为2.2 mg/m3;改变热负荷时,压力振动平稳,幅值很小;燃烧室熄火边界当量比为设计值的75%左右;该燃烧室燃烧特性满...  相似文献   

14.
基于一台缸内直喷汽油机进行了进气增压对负阀重叠HCCI发动机燃烧与排放特性的试验与仿真研究。试验结果表明:相同供油量下,随着进气压力从0.10MPa增大到0.15MPa,着火时刻提前了6°CA,缸内最高燃烧压力增大了0.9MPa,放热率峰值下降了18%,燃烧持续期变长,指示热效率先增大后减小,平均指示压力循环变动率仍保持在4%。由于进气增压使内部残余废气率提高了7%,造成比热容上升而降低了缸内温度。仿真计算揭示了随着进气压力增加,导致负阀重叠期燃油发生改质变化,OH基和O基反应速率减缓,以及C2H2等活性分子浓度上升了80%和CH4等稳定分子浓度下降了37%,使得HCCI热着火温度略微下降,提高了HCCI着火稳定性。  相似文献   

15.
为了探究沼气成分的变化对微型燃气轮机燃烧室性能产生的影响,对微型燃气轮机环形燃烧室在不同成分沼气条件下的流动及燃烧过程进行了数值分析,得到了燃烧室内部的压力、温度及污染物生成量等参数,并对比了在不同甲烷含量的沼气下,燃烧室燃气侧的来流参数、内部温度和污染物分布以及出口参数的变化。计算结果表明:为保证微型燃气轮机的热负荷,燃气中甲烷含量的降低将增大燃气侧的流量以及压力。而燃气中二氧化碳含量的增加,增大了燃烧室内的高温区域面积以及温度梯度,并影响了燃烧反应的充分进行,增加了NO_x与CO的生成量。  相似文献   

16.
围绕点燃式发动机燃用汽油、LPG和CNG的燃烧特性及循环变动开展了研究.发动机在最大转矩工况运行,分别从压力参数方面及燃烧参数方面对循环变动进行了分析.结果表明,汽油的燃烧循环变动系数最小,LPG燃烧过程中循环变动系数增大,CNG燃烧过程中循环变动系数最大;燃烧阶段循环变动是产生发动机循环变动的主要原因,采用进气道预混的方式燃用气体燃料时,进气阶段变动是造成发动机循环变动的原因之一;汽油燃烧时,火焰发展期与燃烧持续期线性相关,良好的着火决定燃烧过程的稳定,LPG和CNG燃烧时,火焰发展期与燃烧持续期的相关性减弱,着火和火焰的传播共同影响燃烧过程的稳定性;放热率型心与平均指示压力有良好的线性关系,说明发动机的平均指示压力受放热过程的影响.  相似文献   

17.
高压共轨柴油机高海拔(低气压)燃烧特性   总被引:5,自引:0,他引:5  
利用内燃机高原环境模拟试验台,对经过高海拔标定后的高压共轨柴油机进行了外特性试验,重点研究了高原环境条件(0~5,km)对低速和高速燃烧特性的影响.结果表明:该柴油机在低速下平均指示压力、最高燃烧压力、最大压力升高率和放热率峰值均随海拔的增加而减小;海拔每升高1,km,上述燃烧参数分别平均降低6.83%、7.03%、4.00%和3.92%.低速下最高燃烧压力点、放热率峰值点和放热率重心随海拔基本保持不变,最大压力升高率点后移.高速下平均指示压力和放热率峰值随海拔的增加而减小,海拔每升高1,km,分别降低2.59%和2.00%;最高燃烧压力随海拔基本保持不变,最高燃烧温度随海拔的增加而增高;最高燃烧压力点、最高燃烧温度点和放热率峰值点以及放热率重心前移.在高海拔高速工况下发生了燃烧压力振荡,造成噪声和机械负荷增大.  相似文献   

18.
为了探究喷嘴与燃烧室壁面安装孔间的缝隙对微型燃气轮机燃烧室流动及燃烧特性的影响,运用三维数值计算软件,对30 kW微型燃气轮机燃烧室在不同面积缝隙下的燃烧过程进行了数值计算,得到了燃烧室内的流场及温度场,并对比分析了燃烧室各处的气体流量分配、燃烧室内部温度分布以及污染物排放量。计算结果表明:缝隙面积的变化对燃烧室内气量分配的影响是全局性的,随着缝隙面积的增大,缝隙内的气体流量增加,燃烧室其它各处的流量则相应减小。在贫燃的条件下,这一过程使得燃烧室内部的整体温度逐渐减低,随之C0的排放量小幅增大。此外,一定范围内的缝隙能够在降低燃烧室整体温度的同时维持火焰形态,有效降低NOx的排放量。  相似文献   

19.
张品  刘圣勇  王炯 《太阳能学报》2018,39(12):3466-3474
利用自主设计的实验台研究生物质秸秆打捆燃料的燃烧特性和影响因素。实验结果表明:生物质秸秆打捆燃料的燃烧是由外向内进行的,燃烧过程经历水分蒸发、热解、燃烧和燃尽4个阶段;当给风量为70 m~3/h时,玉米秸秆打捆燃料着火锋面向下传播的速度比向上传播的速度快,内层传播的速度比外层传播的速度快,燃烧完全所需的时间较长;随着风量的增加,在给风量为90、110 m~3/h条件下,着火锋面向上传播的速度超过向下传播的速度,外层传播的速度超过内层传播的速度,着火锋面温度随着风量的增加而增大;继续增大风量,当给风量为130 m~3/h时,燃烧完全所需的时间最短,但着火锋面温度峰值有所下降;同在给风量90 m~3/h下,小麦秸秆打捆燃料由于内部较松散,其向上、向下、内层着火锋面传播速率和着火锋面温度均高于玉米秸秆打捆燃料。  相似文献   

20.
利用高速摄像的方法,在定容燃烧弹内对比了柴油在空气(AA)和在甲烷/空气(MAA)氛围中的燃烧过程和碳烟生成特性.结果表明:两种氛围中喷油压力对柴油着火和燃烧影响规律一致;当喷油压力从40,MPa升高到160,MPa时,柴油在空气和甲烷/空气氛围中滞燃期分别由2.6,ms和2.8,ms缩短至2.0,ms和2.1,ms,燃烧持续期分别由5.2,ms和4.9,ms缩短至3.3,ms和3.2,ms;火焰浮起长度增加,燃烧压力更快达到峰值,放热率曲线上升始点提前,放热率峰值增大;空间综合自然发光度(SINL)和时间积分自然发光度(TINL)均大幅度降低.但在甲烷/空气氛围中与在空气中相比,柴油滞燃期平均延长0.18,ms,燃烧持续期平均缩短0.15,ms;火焰浮起长度增加,燃烧压力和放热率升高始点均推迟,放热率峰值升高;SINL和TINL均有所降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号