首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nb and Sc doped TiO2 nanoparticles were synthesized via sol-gel technique. Dopant concentration of each element was varied from 0.5 to 1.5 atomic%. The effect of metal ion doping and calcination temperatures on anatase to rutile phase transformation has been investigated. Samples were analyzed by various analytical methods such as X-ray diffraction (XRD), Transmission Electron Microscope (TEM), X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS). XRD analyses showed that Nb and Sc doped samples calcined at 300 degrees C and 350 degrees C, respectively, were crystalline and had an anatase structure. Results showed that anatase was stable up to 700 degrees C annealing temperature for samples doped with 0.5 atomic% Nb. There was a sharp transition from anatase to rutile phase above 700 degrees C and complete rutile structure was obtained at 750 degrees C. However, the transformation from anatase to rutile was not so sharp in samples doped with 1.0 atomic% and 1.5 atomic% Nb. Results indicated that higher concentration of Nb helps to stabilize the anatase phase. For samples doped with 0.5 atomic% Sc, anatase phase is stable up to 650 degrees C. Transformation from anatase to rutile starts at temperature above 650 degrees C and 100% rutile phase was obtained at 800 degrees C while for samples doped with 1.0 atomic% and 1.5 atomic% Sc, the complete transformation from anatase to rutile takes place at an even higher temperature. Results indicate that increasing the calcination time from 0.5 to 2.0 hours at 500 degrees C does not affect the stability of anatase phase. However, TEM and XRD data showed that the increase in the annealing time leads to an increase in particles size. The rutile to anatase concentration ratio increased with temperature above the phase transformation temperature. The activation energy for the phase transformation from anatase to rutile for doped and undoped samples was also measured. There was a general rise in the activation energy with increasing dopant concentration.  相似文献   

2.
Ag掺杂对TiO2粉末结构的影响   总被引:11,自引:0,他引:11  
采用溶胶-凝胶工艺制备了Ag掺杂的TiO2粉末。通过XRD、SEM、EDX、DSC-TG、BET氮吸附法等研究了Ag掺杂对TiO2结构的影响,结果发现掺杂的Ag降低了TiO2锐钛矿向金红石相转变的温度,促进了相转变。适量掺杂时,Ag抑制了锐钛矿粒子的生长,结果使锐钛矿粒子的粒径降低,TiO2粉末的比表面积增加。  相似文献   

3.
Co-doped SnO2 nanoparticles were synthesized by a simple hydrothermal method, and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectra (DRS) and Photoluminescence spectroscopy (PL). It is found that the SnO2 crystallites with the tetragonal rutile structure formed directly during the hydrothermal process without calcination. The Co-doped SnO2 nanoparticles were spheric and well-dispersed with narrow size distribution. The crystalline size of SnO2 decreased from 5.98 to 2.22 nm when the Co content increased from 0% to 20%. A considerable red shift in the absorbing band edge was observed with increasing of Co dopant.  相似文献   

4.
利用水热合成法,以TiO2(锐钛矿)粉末、钴盐为原料,在NaOH溶液中,180℃水热合成了Co掺杂的钛酸盐纳米棒.将Co掺杂的钛酸盐纳米棒在700℃氩气氛下烧结2 h转化为锐钛矿结构Co掺杂TiO2纳米棒.利用x射线衍射仪(XRD)、扫描电子显微镜(SEM)、紫外一可见分光光度计和超导量子干涉磁强计(SQUID)等对Co掺杂的钛酸盐和Ti0,纳米棒的微结构、形貌和性能进行了表征.研究结果表明,Co掺杂的钛酸盐和未掺杂的纯钛酸盐H2Ti3O7具有相同的层状结构,在样品中未监测到Co杂质(如钴的氧化物和氢氧化物)的峰.Co掺杂的钛酸盐纳米棒表面光滑,直径大约为90 nm~120 nm,长度约1 μm,co的掺杂对纳米棒形貌没有明显影响.Co掺杂后的钛酸盐纳米棒与未掺杂的钛酸盐纳米棒相比,其紫外-可见吸收光谱的吸收峰明显红移,带宽变窄.未掺杂的纯钛酸盐纳米棒的带宽为3.2 eV,与TiO2相同;Co掺杂的钛酸盐纳米棒的带宽为2.6 eV,明显变窄.同时,Co掺杂的钛酸盐和TjO2纳米棒在300 K均具有铁磁性,且其磁化强度大小基本一致,矫顽力也相同.  相似文献   

5.
Sol-Gel法制备纳米TiO2过程中水解pH值的影响及其性能表征   总被引:18,自引:2,他引:16  
王瑞斌  戴松元  王孔嘉 《功能材料》2002,33(3):296-297,302
采用钛酸四异丙酯[Ti(i-OC3H7)4]水解法制备纳米TiO2粉体,水解过程中有很多参数对纳米TiO2的特征产生影响,通过控制制备过程中的水解pH值,可以得到不同粒径和不同晶型的纳米TiO2粉体,本文主要探讨了纳米TiO2晶型转变的条件和晶粒度Dhkl随pH值变化的趋势,并利用XRD,TEM对粉体颗粒的形貌,大小,物相组成进行分析,XRD分析研究表明,纳米的A→R相变和水解pH值密切相关。  相似文献   

6.
We have studied the effect of silver nitrate additions on the anatase–rutile transformation of titanium dioxide in TiO2/Ag composites at low temperature (500°C). The structure and phase composition of the composites with different Ag(I) concentrations have been determined by X-ray diffraction and transmission electron microscopy. The results demonstrate that the percentage of rutile increases with increasing Ag(I) ion concentration, reaching 60 wt %. A mechanism of the anatase–rutile transformation in the composites has been proposed.  相似文献   

7.
A homogeneous thin layer of TiO2 has been successfully coated on the surface of multiwalled carbon nanotubes (MWCNTs), which were produced by catalytic chemical vapor decomposition method, via an in situ sol-gel method. The obtained MWCNT-TiO2 composite materials were heat treated in air at high temperatures, attempting to produce highly crystalline pure rutile nanowires. Through comprehensive characterization obtained by scanning electron microscopy (SEM), transmission electron microscope (TEM), energy dispersive X-ray (EDX), and X-ray powder diffraction (XRD), the effect of heat treatment on crystallization and phase transformation was discussed, and the effect of absence of MWCNTs on the morphology of pure rutile nanowires was analyzed. Both anatase and rutile phases exist after heat treatment in 700 degrees C while only rutile phase exists after heat treatment in 800 degrees C. The crystal size of rutile is formed to be significantly larger than that of anatase, and the hollow tubular structure is found to be destroyed which resulted in nanowire structure.  相似文献   

8.
TiO(2) nanoparticles compounded with different amounts of bismuth were prepared by a sol-gel method, and the effects of compounding bismuth on the phase transformation, photoinduced charge separation and photocatalytic activity for degrading rhodamine B solution were mainly investigated, along with enhancement mechanism of photocatalytic activity of TiO(2) nanoparticles by compounding bismuth species. It can be confirmed that, by means of X-ray diffraction (XRD), surface photovoltage spectroscopy (SPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), compounding bismuth can extend the optical response, and effectively inhibit the phase transformation process from anatase to rutile, consequently greatly improving the anatase crystallinity so as to promote the photoinduced charge separation. These factors are responsible for the increase in the photocatalytic activity of TiO(2) compounded with an appropriate amount of bismuth species.  相似文献   

9.
TiO2 ceramic coatings with thickness of 20 μm were formed on the surface of pure titanium by micro-plasma oxidation. Their micro-structures were investigated by by using X-ray diffraction and their surface images were detected by using scan electronic microscope. There were three kinds of TiO2 coatings, pure anatase type TiO2 phase, mixed phases consisted of rutile type TiO2 phase and anatase type TiO2 phase, pure rutile type TiO2 phase. The coating surface with the pure anatase type TiO2 phase is rough, while the coating surface with the pure rutile type TiO2phase is smooth. The upper coating surface with the mixed type TiO2 phases is anatase type TiO2 structure and the subsurface of the TiO2 coating is rutile type TiO2structure.  相似文献   

10.
Anisotropic rutile/anatase TiO2 nanoparticles (AB-TiO2) were synthesized by the Ti-peroxo complex method. Their photocatalytic activity in the degradation of Rhodamine B (RhB) was evaluated and compared to that of commercial TiO2 P25 and TiO2 obtained through the benzyl alcohol route (OB-TiO2). The samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR in DRIFT mode), Field-Emission Scanning Electronic Microscopy (FEG-SEM), N2 physisorption and UV-visible spectroscopy. Photodegradation of RhB was carried out under visible light and the results revealed a remarkable photocatalytic activity of the AB-TiO2 in terms of surface area. The excellent performance of the AB-TiO2 was explained in light of the synergistic effect of the coexistence of anatase/rutile phases, anisotropy and irreversible adsorption of organic species during sol-gel synthesis. UV-visible measurements also indicated that N-deethylation and photobleaching mechanisms occur to different extents, depending on the surface composition of the photocatalyst.  相似文献   

11.
二氧化钛催化剂晶型调控技术的研究进展   总被引:1,自引:0,他引:1  
综述二氧化钛由锐钛矿向金红石晶型转变调控技术的最新成果,分析温度、氧化物和以及离子掺杂对实现晶型转变的影响规律,重点研究氧化物和离子掺杂对晶型转变的影响。结果显示:复合金属氧化物熔点低于TiO2熔点时,可促进锐钛矿型TiO2向金红石型转变;而金属氧化物熔点高于TiO2熔点时,可阻碍晶型转变;掺杂离子的离子半径、化合价、离子大小对二氧化钛晶型转变及催化性能有明显的影响,当掺杂金属离子半径大于或小于Ti4+半径,使得锐钛矿型TiO2更稳定;当掺杂离子的半径与Ti4+半径相近时,有利于锐钛矿型向金红石型转变,而体积较小的低价阴离子有利于金红石型二氧化钛的的生成,体积较大的高价阴离子则有利于锐钛矿型二氧化钛的的生成;阴阳离子共掺杂可以有效地调控二氧化钛晶型转变,并且能够提高TiO2的光催化活性。探讨二氧化钛多晶之间的协同作用,并基于二氧化钛掺杂改性的计算模拟,指出今后的发展方向。  相似文献   

12.
Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites were investigated by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The nanocrystallites obtained experimentally are mixture of anatase and rutile, the uniform diameters of particles are about 30 nm. The phase transformation from anatase to rutile was accelerated by AlCl3, and rutile content is increased from 26.7 wt pct to 53.6 wt pct with increasing of addition of AlCl3 from 0.0 wt pct to 5.0 wt pct. The particle size is reduced and the size distribution becomes very narrow. The crystal lattice constants have the trend to decrease, and celi volumes appear as shrinkable  相似文献   

13.
对TiO2/SiO2复合薄膜的晶化特征进行了分析,研究表明,随着TiO2含量的增加,其晶化温度降低,而由锐钛矿相完全转变为金红石相的速度减慢.SiO2的析晶温度也随着TiO2含量的增加而降低,即TiO2具有诱导SiO2析晶的作用.锐钛矿晶粒尺寸的增加幅度随着TiO2含量的降低和热处理温度的升高而增大.其晶粒尺寸的大小与热处理时间的平方根成正比.认为由于TiO2含量的不同,造成薄膜中由锐钛矿相完全转变成金红石相的速度差异主要来自于薄膜中应力的作用.  相似文献   

14.
Nitrogen doped TiO(2) nanocrystals with anatase and rutile mixed phases were prepared by incomplete oxidation of titanium nitride at different temperatures. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), core level X-ray photoelectron spectroscopy (CL XPS), valence band X-ray photoelectron spectroscopy (VB XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and visible light excited photoluminescence (PL). The photocatalytic activity was evaluated for photocatalytic degradation of toluene in gas phase under visible light irradiation. The visible light absorption and photoactivities of these nitrogen doped TiO(2) nanocrystals can be clearly attributed to the change of the additional electronic (N(-)) states above the valence band of TiO(2) modified by N dopant as revealed by the VB XPS and visible light induced PL. A band gap structure model was established to explain the electron transfer process over nitrogen doped TiO(2) nanocrystals under visible light irradiation, which was consistent with the previous theoretical and experimental results. This model can also be applied to understand visible light induced photocatalysis over other nonmetal doped TiO(2).  相似文献   

15.
Nano-columnar TiO2 grains are prepared and immobilized by chemical vapor deposition using TiCl4, H2 and O2 at low temperature. The structure of TiO2 is analyzed by X-ray diffraction (XRD), the morphology is observed by scanning electron microscopy (SEM) and the adhesion is estimated by measuring the critical load in scratch test. Results show that the structure of TiO2 films depend on the deposition temperature changing from amorphous, anatase, rutile, and both anatase and rutile phases as prepared at temperatures of 200, 300, 400 and 500 degrees C, respectively. The nano-columnar TiO2 grains are formed in both rutile and anatase phases, while it could be only rutile phase by increasing TiCl4 flow rate. The morphologies of TiO2 changes from smooth to nano-columnar grains as the deposition temperature increased from 200 to 400 degrees C. Excellent adhesion strength of crystalline TiO2 was obtained and it could be improved by increasing the TiCl4 flow rate in range of 0.3-0.6 sccm, where the critical load of TiO2 increases from 17 to 21 N.  相似文献   

16.
Nanostructured TiO2 is a most promising functional ceramic owing to its potential utilization in photocatalytical, optical and electrical applications. Nanostructured TiO2 coating was deposited through thermal spraying with liquid feedstock. Two types of crystalline structures were present in the synthesized TiO2 coating including anatase phase and rutile phase.The effect of spray flame conditions on the crystalline structure was investigated in order to control the crystalline structure of the coating. The results showed that spray distance, flame power and precursor concentration in the liquid feedstock significantly influenced phase constitutions and grain size in the coating. Anatase phase was formed at spray distance from 150 to 250mm, while rutile phase was evidently observed in the coating deposited at 100 mm. The results suggested that anatase phase was firstly formed in the coating, and rutile phase resulted from the transformation of the deposited anatase phase. The phase transformation from anatase to rutile occurred through the annealing effect of spraying flame. The control of the phase formation can be realized through flame condition and spray distance.  相似文献   

17.
The structural evolution of nanocrystalline TiO2 was studied by X-ray diffraction (XRD) and the Rietveld refinement method (RRM). TiO2 powders were prepared by the sol-gel technique. Post annealing of as-synthesized powders in the temperature range from 500 degrees C to 800 degrees C under air and argon atmospheres led to the formation of TiO2 nanoparticles with mean crystallite size in the range of 37-165 nm, based on the Rietveld refinement results. It was found that the phase structure, composition, and crystallite size of the resulting particles were dependent on not only the annealing temperature, but also the annealing atmosphere. Rietveld refinement of the XRD data showed that annealing the powders under argon atmosphere promoted the polymorphic phase transformation from anatase to rutile. Field emission scanning electron microscopy (FESEM) was employed to investigate the morphology and size of the annealed powders.  相似文献   

18.
(N, F)-codoped anatase TiO2 nanocrystals with active visible light response were prepared by using a simple sol-gel approach. X-ray photoelectron spectroscopy measurements suggested that the substitutional N and F species replaced the lattice oxygen atoms in TiO2 nanocrystals. Such nanocrystals showed strong absorption from 400 to 550 nm, which was mainly induced by nitrogen doping. The phase transformation from anatase to rutile was hindered by fluorine doping at high calcination temperatures, which was verified by XRD patterns. The N2 adsorption-desorption isotherms revealed the absence of mesopores in these nanocrystals. The (N, F)-codoped TiO2 nanocrystals showed satisfying photocatalytic activity on the photo-degradation of methylene blue under visible light.  相似文献   

19.
Developing anatase/rutile phase-junction in TiO2 to construct Z-scheme system is quite effective to improve its photoelectrochemical activity.In this work,the anatase/rutile phase-junction Ag/TiO2 nanocomposites are developed as photocathodes for hydrogen production.The optimized Ag/TiO2 nanocomposite achieves a high current density of 1.28 mA cm-2,an incident photon-to-current con-version efficiency(IPCE)of 10.8%,an applied bias photon-to-current efficiency(ABPE)of 0.32 at 390 nm and a charge carriers'lifetime up to 2000s.Such enhancement on photoelectrochemical activity can be attributed to:(i)the generated Z-scheme system in the anatase/rutile phase-junction Ag/TiO2 photocath-ode enhances the separation,diffusion and transformation of electron/hole pairs inside the structure,(ii)Ag nanodots modification in the anatase/rutile phases leading to the tuned band gap with enhanced light absorption and(iii)the formed Schottky barrier after Ag nanodots surface modification provides enough electron traps to avoid the recombination of photogenerated electrons and holes.Our results here sug-gest that developing phase-junction nanocomposite as photocathode will provide a new vision for their enhanced photoelectrochemical generation of hydrogen.  相似文献   

20.
Photocatalytic activity of TiO2 doped with boron and vanadium   总被引:2,自引:0,他引:2  
Boron (B)- and vanadium (V)-doped TiO(2) photocatalysts were synthesized using modified sol-gel reaction processes and characterized by X-ray diffraction (XRD), Raman spectroscopy and N(2) physisorption (BET). The photocatalytic activities were evaluated by monitoring the degradation of methylene blue (MB). The results showed that the materials possess high surface area. The addition of B favored the transformation of anatase to rutile, while in the presence of V, anatase was the only phase detected. The MB degradation on V-doped TiO(2) was significantly affected by the preparation method. In fact while the presence of V in the bulk did not influence strongly the photoreactivity under visible irradiation, an increase of surface V doping lead to improved photodegradation of MB. The degradation of MB dye indicated that the photocatalytic activities of TiO(2) increased as the boron doping increased, with high conversion efficiency for 9mol% B doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号