首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugar transport by some permeases in Escherichia coli is allosterically regulated by the phosphorylation state of the intracellular regulatory protein, enzyme IIAglc of the phosphoenolpyruvate:sugar phosphotransferase system. A sensitive radiochemical assay for the interaction of enzyme IIAglc with membrane-associated lactose permease was used to characterize the binding reaction. The binding is stimulated by transportable substrates such as lactose, melibiose, and raffinose, but not by sugars that are not transported (maltose and sucrose). Treatment of lactose permease with N-ethylmaleimide, which blocks ligand binding and transport by alkylating Cys-148, also blocks enzyme IIAglc binding. Preincubation with the substrate analog beta-D-galactopyranosyl 1-thio-beta-D-galactopyranoside protects both lactose transport and enzyme IIAglc binding against inhibition by N-ethylmaleimide. A collection of lactose permease replacement mutants at Cys-148 showed, with the exception of C148V, a good correlation of relative transport activity and enzyme IIAglc binding. The nature of the interaction of enzyme IIAglc with the cytoplasmic face of lactose permease was explored. The N- and C-termini, as well as five hydrophilic loops in the permease, are exposed on the cytoplasmic surface of the membrane and it has been proposed that the central cytoplasmic loop of lactose permease is the major determinant for interaction with enzyme IIAglc. Lactose permease mutants with polyhistidine insertions in cytoplasmic loops IV/V and VI/VII and periplasmic loop VII/VIII retain transport activity and therefore substrate binding, but do not bind enzyme IIAglc, indicating that these regions of lactose permease may be involved in recognition of enzyme IIAglc. Taken together, these results suggest that interaction of lactose permease with substrate promotes a conformational change that brings several cytoplasmic loops into an arrangement optimal for interaction with the regulatory protein, enzyme IIAglc. A topological map of the proposed interaction is presented.  相似文献   

2.
An engineered fusion protein containing two tandem lactose permease molecules (permease dimer) exhibits high transport activity and is used to test the phenomenon of negative dominance. Introduction of the mutation Glu-325-->Cys into either the first or the second half of the dimer results in a 50% decrease in activity, whereas introduction of the mutation into both halves of the dimer abolishes transport. Lactose transport by permease dimer is completely inactivated by N-ethylmaleimide; however, 40-45% activity is retained after N-ethylmaleimide treatment when either the first or the second half of the dimer is replaced with a mutant devoid of cysteine residues. The observations demonstrate that both halves of the fusion protein are equally active and suggest that each half may function independently. To test the possibility that oligomerization between dimers might account for the findings, a permease dimer was constructed that contains two different deletion mutants that complement functionally when expressed as untethered molecules. Because this construct does not catalyze lactose transport to any extent whatsoever, it is unlikely that the two halves of the dimer interact or that there is an oligomeric interaction between dimers. The approach is consistent with the contention that the functional unit of lactose permease is a monomer.  相似文献   

3.
Site-directed N-ethylmaleimide labeling was studied with Glu-126 and/or Arg-144 mutants in lactose permease containing a single, native Cys residue at position 148 in the substrate-binding site. Replacement of either Glu-126 or Arg-144 with Ala markedly decreases Cys-148 reactivity, whereas interchanging the residues, double-Ala replacement, or replacement of Arg-144 with Lys or His does not alter reactivity, indicating that Glu-126 and Arg-144 are charge-paired. Importantly, although alkylation of Cys-148 is blocked by ligand in wild-type permease, no protection whatsoever is observed with any of the Glu-126 or Arg-144 mutants. Site-directed fluorescence with 2-(4-maleimidoanilino)-naphthalene-6-sulfonic acid (MIANS) in mutant Val-331 --> Cys was also studied. In marked contrast to Val-331 --> Cys permease, ligand does not alter MIANS reactivity in mutant Glu-126 --> Ala/Val-331 --> Cys, Arg-144 --> Ala/Val-331 --> Cys, or Arg-144 --> Lys/Val-331 --> Cys and does not cause either quenching or a shift in the emission maximum of the MIANS-labeled mutants. However, mutation Glu-126 --> Ala or Arg-144 --> Ala and, to a lesser extent, Arg-144 --> Lys cause a red-shift in the emission spectrum and render the fluorophore more accessible to I-. The results demonstrate that Glu-126 and Arg-144 are irreplaceable for substrate binding and suggest a model for the substrate-binding site in the permease. In addition, the findings are consistent with the notion that alterations in the substrate translocation pathway at the interface between helices IV and V are transmitted conformationally to the H+ translocation pathway at the interface between helices IX and X.  相似文献   

4.
In this study, we have examined the transport characteristics of the wild-type lactose permease, single mutants in which Lys-319 was changed to asparagine or alanine or Glu-325 was changed to glutamine or alanine, and the corresponding double mutant strains. The wild-type and Asn-319 mutant showed high levels of lactose uptake, with Km values of 0.42 and 1.30 mM and Vmax values of 102.6 and 48.3 nmol of lactose/min/mg of protein, respectively. The Asn-319/Gln-325 strain had a normal Km of 0.36 mM and a moderate Vmax of 18.5 nmol of lactose/min/mg of protein. By comparison, the single E325Q strain had a normal Km of 0.27 mM but a very defective Vmax of 1.3 nmol of lactose/min/mg of protein. A similar trend was observed among the alanine substitutions at these positions, although the Vmax values were lower for the Ala-319 mutations. When comparing the Vmax values between the single position 325 mutants with those of the double mutants, these results indicate that neutral 319 mutations substantially alleviate a defect in Vmax caused by neutral 325 mutations. With regard to H+/lactose coupling, the wild-type permease is normally coupled and can transport lactose against a gradient. The position 325 single mutants showed no evidence of H+ transport with lactose or thiodigalactoside (TDG) and were unable to facilitate uphill lactose transport. The single Asn-319 mutant and double Asn-319/Gln-325 mutant were able to transport H+ upon the addition of lactose or TDG. In addition, both of these strains catalyzed a sugar-dependent H+ leak that inhibited cell growth in the presence of TDG. These two strains were also defective in uphill transport, which may be related to their sugar-dependent leak pathway. Based on these and other results in the literature, a model is presented that describes how the interactions among several ionizable residues within the lactose permease act in a concerted manner to control H+/lactose coupling. In this model, Lys-319 and Glu-325 play a central role in governing the ability of the lactose permease to couple the transport of H+ and lactose.  相似文献   

5.
Consler et al. [Consler, T. G., Persson, B. L., et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 6934-6938] described a one-step purification of lactose permease, a hydrophobic membrane transport protein, from Escherichia coli. Permease constructs containing a biotin acceptor domain are biotinylated in vivo, followed by solubilization and avidin affinity purification. Although a high degree of purity is obtained, only about 15-20% of the permease is recovered due to incomplete biotinylation. In this communication, a simple modification is described that allows quantitative recovery of highly purified permease. Membranes containing permease with the biotin acceptor domain from the Klebsiella pneumoniae oxaloacetate decarboxylase are extracted with 5 M urea or treated with dicyclohexylcarbodiimide to inactivate F1/Fo ATPase and biotinylated in vitro with biotin ligase, ATP and d-biotin. Subsequently, the membranes are harvested, washed to remove free biotin and solubilized with 2% n-dodecyl-beta-D-maltopyranoside. Biotinylated permease is then purified in one step by affinity chromatography on monomeric avidin-Sepharose. The purified material is homogeneous and exhibits full activity with respect to ligand binding and counterflow.  相似文献   

6.
Using a functional lactose permease mutant devoid of Cys (C-less permease), each amino acid residue in putative transmembrane helix V was replaced individually with Cys (from Met145 to Thr163). Of the 19 mutants, 13 are highly functional (60-125% of C-less permease activity), and 4 exhibit lower but significant lactose accumulation (15-45% of C-less permease). Cys replacement of Gly147 or Trp151 essentially inactivates the permease (< 10% of C-less); however, previous studies [Menezes, M. E., Roepe, P. D., & Kaback, H. R. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1638; Jung, K., Jung, H., et al. (1995) Biochemistry 34, 1030] demonstrate that neither of these residues is important for activity. Immunoblots reveal that all of the mutant proteins are present in the membrane in amounts comparable to C-less permease with the exception of Trp151-->Cys and single Cys154 permeases which are present in reduced amounts. Finally, only three of the single-Cys mutants are inactivated significantly by N-ethylmaleimide (Met145-->Cys, native Cys148, and Gly159-->Cys), and the positions of the three mutants fall on the same face of helix V.  相似文献   

7.
Site-directed excimer fluorescence indicates that Glu269 (helix VIII) and His322 (helix X) in the lactose permease of Escherichia coli lie in close proximity [Jung, K., Jung, H., Wu, J., Privé, G.G., & Kaback, H.R. (1993) Biochemistry 32, 12273]. In this study, Glu269 was replaced with His in wild-type permease, leading to the presence of bis-His residues between helices VIII and X. Wild-type and Glu269-->His permease containing a biotin acceptor domain were purified by monomeric avidin affinity chromatography, and binding of Mn2+ was studied by electron paramagnetic resonance (EPR) spectroscopy. The amplitude of the Mn2+ EPR spectrum is reduced by the Glu269-->His mutant, while no change is observed in the presence of wild-type permease. The Glu269-->His mutant contains a single binding site for Mn2+ with a KD of about 43 microM, and Mn2+ binding is pH dependent with no binding at pH 5.0, stoichiometric binding at pH 7.5, and a midpoint at about pH 6.3. The results confirm the conclusion that helices VIII and X are closely opposed in the tertiary structure of lac permease and provide a novel approach for studying helix proximity, as well as solvent accessibility, in polytopic membrane proteins.  相似文献   

8.
Five single-Trp mutants were constructed by replacing Val315, Leu318, Val326, Leu329, or Val331 with Trp in transmembrane helix X of a functional lactose permease mutant devoid of Trp residues (Trp-less permease). Taking into account expression levels, each single-Trp permease except for Val331-->Trp exhibits significant activity. The intrinsic fluorescence emission of each single-Trp mutant does not change significantly after addition of beta-d-galactopyranosyl 1-thio-beta-d-galactopyranoside (TDG), indicating that ligand induces little change in the microenvironment of the Trp residues. However, fluorescence quenching studies with the brominated detergent 7,8-dibromododecyl beta,d-maltoside (BrDM) demonstrate that a Trp residue in place of Val315, Val326, or Val331 becomes less accessible to BrDM in the presence of TDG, while a Trp residue in place of Leu318 or Leu329 becomes more accessible. Acrylamide quenching studies with Leu318-->Trp and Val331-->Trp permeases or 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid (MIANS)-labeled Thr320-->Cys and Glu325-->Cys permeases indicate that positions 318 and 325 also become more accessible to a hydrophobic environment in the presence of TDG, while positions 320 and 331 become less accessible. The findings are consistent with a recently proposed mechanism for energy coupling in lactose permease [Kaback, H. R. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 5539-5543] in which substrate binding causes a conformational change resulting in movement of Glu325 to a nonpolar environment with a dramatic increase in pKa.  相似文献   

9.
To examine further the role of charge-pair interactions in the structure and function of lactose permease, Asp237 (helix VII), Asp240 (helix VII), Glu126 (cytoplasmic loop IV/V), Glu269 (helix VIII), and Glu325 (helix X) were replaced individually with Cys in a functional mutant devoid of Cys residues. Each mutant was then oxidized with H2O2 in order to generate a sulfinic and/or sulfonic acid at these positions. Due to the isosteric relationship between aspartate and sulfinate, in particular, and the lower pKa of the sulfinic and sulfonic acid side chains, oxidized derivatives of Cys are useful probes for examining the role of carboxylates. Asp237-->Cys or Asp240-->Cys permease is inactive, as shown previously, but H2O2 oxidation restores activity to an extent similar to that observed when a negative charge is reintroduced by other means. Glu126-->Cys, Glu269-->Cys, or Glu325-->Cys permease is inactive, but oxidation does not restore active lactose transport. The data are consistent with previous observations indicating that Asp237 and Asp240 are not critical for active lactose transport, while Glu126, Glu269, and Glu325 are irreplaceable. Although Glu269-->Cys permease does not transport lactose, the oxidized mutant exhibits significant transport of beta,D-galactosylpyranosyl 1-thio-beta,D-galactopyranoside, a property observed with Glu269-->Asp permease. The observation supports the idea that an acidic residue at position 269 is important for substrate recognition. Finally, oxidized Glu325-->Cys permease catalyzes equilibrium exchange with an apparent pKa of about 6.5, more than a pH unit lower than that observed with Glu325-->Asp permease, thereby providing strong confirmatory evidence that a negative charge at position 325 determines the rate of translocation of the ternary complex between the permease, substrate, and H+.  相似文献   

10.
Six single-Trp mutants were engineered by individually reintroducing each of the native Trp residues into a functional lactose permease mutant devoid of Trp (Trp-less permease; Menezes ME, Roepe PD, Kaback HR, 1990, Proc Natl Acad Sci USA 87:1638-1642), and fluorescent properties were studied with respect to solvent accessibility, as well as alterations produced by ligand binding. The emission of Trp 33, Trp 78, Trp 171, and Trp 233 is strongly quenched by both acrylamide and iodide, whereas Trp 151 and Trp 10 display a decrease in fluorescence in the presence of acrylamide only and no quenching by iodide. Of the six single-Trp mutants, only Trp 33 exhibits a significant change in fluorescence (ca. 30% enhancement) in the presence of the substrate analog beta,D-galactopyranosyl 1-thio-beta,D-galactopyranoside (TDG). This effect was further characterized by site-directed fluorescent studies with purified single-Cys W33-->C permease labeled with 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid (MIANS). Titration of the change in the fluorescence spectrum reveals a 30% enhancement accompanied with a 5-nm blue shift in the emission maximum, and single exponential behavior with an apparent KD of 71 microM. The effect of substrate binding on the rate of MIANS labeling of single-Cys 33 permease was measured in addition to iodide and acrylamide quenching of the MIANS-labeled protein. Complete blockade of labeling is observed in the presence of TDG, as well as a 30% decrease in accessibility to iodide with no change in acrylamide quenching. Overall, the findings are consistent with the proposal (Wu J, Frillingos S, Kaback HR, 1995a, Biochemistry 34:8257-8263) that ligand binding induces a conformational change at the C-terminus of helix I such that Pro 28 and Pro 31, which are on one face, become more accessible to solvent, whereas Trp 33, which is on the opposite face, becomes less accessible to the aqueous phase. The findings regarding accessibility to collisional quenchers are also consistent with the predicted topology of the six native Trp residues in the permease.  相似文献   

11.
Calmodulin is a highly acidic protein (net charge -24 at pH 8.0 in the absence of calcium) that binds to peptide and organic ligands with high affinity (Ka > 10(9) M-1) in a calcium-dependent manner. We have exploited these properties to develop calmodulin as a versatile tag for antibody fragments. Fusions of calmodulin with single chain Fv fragments (scFv) could be expressed by secretion from bacteria in good yield (5-15 mg/l in shaker flasks), and purified from periplasmic lysates or broth to homogeneity in a single step, either by binding to anion-exchange resin (DEAE-Sephadex), or to an organic ligand of calmodulin (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide-agarose). The antibody fusions could be detected by binding of fluorescently labeled peptide ligands, as illustrated by their use in confocal microscopy, fluorescent activated cell sorting and "band shift" gel electrophoresis. Moreover, the interaction between calmodulin and peptide ligands could provide a means of heterodimerization of proteins, as illustrated by the assembly of an antibody-calmodulin fusion with maltose binding protein tagged with a peptide ligand of calmodulin.  相似文献   

12.
The N-terminal six transmenbrane helices (N6) and the C-terminal six transmembrane helices (C6) of lactose permease, each with a single Cys residue, were co-expressed, and cross-linking was studied. The proximity of paired Cys residues in helices I (positions 11, 14, 15, 18, 25, 28, 29, or 32) and VII (positions 227, 231, 232, 234, 235, 238, 239, 241, 242, 245, or 246) was studied by using homobifunctional thiol-specific chemical linkers of different lengths and chemical properties. The results demonstrate that Cys residues on one face of the periplasmic half of helix I (positions 32, 29, 28, or 25) cross-link to Cys residues on one face of the periplasmic half of helix VII (242 or 245). In contrast, no cross-linking is evident with paired Cys residues in the cytoplasmic halves of helices I (positions 11, 14, 15, or 18) and VII (positions 227, 230, 231, 232, 234, 235, 238, or 239). The results indicate that helices I and VII are in close proximity only at their periplasmic halves. Ligand binding decreases cross-linking efficiency of the Cys pair 28/245 or 25/242 with N, N'-o-phenylenedimaleimide (rigid 6 A) and increases efficiency with N,N'-p-phenylenedimaleimide (rigid 10 A) or 1,6-bismaleimidohexane (flexible 16 A), indicating that the inter-thiol distance is about 6 A in the absence of ligand and that ligand binding increases the distance up to 10 A. The inter-thiol distance for Cys pairs 29/245 or 32/245 is less than 6 A in the absence of ligand, and in the presence of ligand, distance increases to between 6 and 10 A. Taken together, the results indicate that ligand binding induces a translational or scissors-like rigid body movement of helix I and/or VII at the periplasmic interface between the helices.  相似文献   

13.
The conformationally sensitive epitope for monoclonal antibody (mAb) 4B1, which uncouples lactose from H+ translocation in the lactose permease of Escherichia coli, is localized in the periplasmic loop between helices VII and VIII (loop VII/VIII) on one face of a short helical segment (Sun J, et al., 1996, Biochemistry 35;990-998). Comparison of sequences in the region corresponding to loop VII/VIII in members of Cluster 5 of the Major Facilitator Superfamily (MFS), which includes five homologous oligosaccharide/H+ symporters, reveals interesting variations. 4B1 binds to the Citrobacter freundii lactose permease or E. coli raffinose permease with resultant inhibition of transport activity. Because E. coli raffinose permease contains a Pro residue at position 254 rather than Gly, it is unlikely that the mAb recognizes the peptide backbone at this position. Consistently, E. coli lactose permease with Pro in place of Gly254 also binds 4B1. In contrast, 4B1 binding is not observed with either Klebsiella pneumoniae lactose permease or E. coli sucrose permease. When the epitope is transferred from E. coli lactose permease (residues 245-259) to the sucrose permease, the modified protein binds 4B1, but the mAb has no significant effect on sucrose transport. The studies provide further evidence that the 4B1 epitope is restricted to loop VII/VIII, and that 4B1 binding induces a highly specific conformational change that uncouples substrate and H+ translocation.  相似文献   

14.
Substitution of Cys for Val at position 52 of the lac repressor was designed to permit disulfide bond formation between the two N-terminal DNA binding domains that comprise an operator DNA binding site. This position marks the closest approach of these domains based on the x-ray crystallographic structures of the homologous purine holorepressor-operator complex and lac repressor-operator complex (Schumacher, M. A., Choi, K. Y., Zalkin, H., and Brennan, R. G. (1994) Science 266, 763-770; Lewis, M., Chang, G., Horton, N.C., Kercher, M. A., Pace, H. C., Schumacher, M. A., Brennan, R. G., and Lu, P. (1996) Science 271, 1247-1254). The V52C mutation was generated by site-specific methods, and the mutant protein was purified and characterized. In the reduced form, V52C bound operator DNA with slightly increased affinity. Exposure to oxidizing conditions resulted in disulfide bond formation, and the oxidized protein bound operator DNA with approximately 6-fold higher affinity than wild-type protein. Inducer binding for both oxidized and reduced forms of V52C was comparable to wild-type lac repressor. In the presence of inducer, the reduced protein exhibited wild-type, diminished DNA binding. In contrast, DNA binding for the oxidized form was unaffected by inducer, even at 1 mM. Thus, the formation of the designed disulfide between Cys52 side chains within each dimer renders the protein-operator complex unresponsive to sugar binding, presumably by disrupting the allosteric linkage between operator and inducer binding.  相似文献   

15.
16.
Glu126 and Arg144 in the lactose permease are indispensable for substrate binding and probably form a charge-pair [Venkatesan, P., and Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807]. Mutants with Glu126-->Ala or Arg144-->Ala do not bind ligand or catalyze lactose accumulation, efflux, exchange, downhill lactose translocation, or lactose-induced H+ influx. In contrast, mutants with conservative mutations (Glu126-->Asp or Arg144-->Lys) exhibit drastically different phenotypes. Arg144-->Lys permease accumulates lactose slowly to low levels, but does not bind ligand or catalyze equilibrium exchange, efflux, or lactose-induced H+ influx. In contrast, Glu126-->Asp permease catalyzes lactose accumulation and lactose-induced H+ influx to wild-type levels, but at significantly lower rates. Surprisingly, however, no significant exchange or efflux activity is observed. Glu126-->Asp permease exhibits about a 6-fold increase in the Km for active transport relative to wild-type permease with a comparable Vmax. Direct binding assays using flow dialysis demonstrate that mutant Glu126-->Asp binds p-nitrophenyl-alpha,D-galactopyranoside. Indirect binding assays utilizing substrate protection against [14C]-N-ethylmaleimide labeling of single-Cys148 permease reveal an apparent Kd of 3-5 mM for lactose and 15-20 microM for beta, D-galactopyranosyl-1-thio-beta,D-galactopyranoside (TDG). The affinity of Glu126-->Asp/Cys148 permease for lactose is markedly decreased (Kd > 80 mM), while TDG affinity is altered to a much lesser extent (Kd ca. 80 microM). The results extend the conclusion that a carboxylate at position 126 and a guanidinium group at position 144 are irreplaceable for substrate binding and support the idea that Arg144 plays a major role in substrate specificity.  相似文献   

17.
18.
By using Cys-scanning mutagenesis with site-directed sulfhydryl modification in situ [Frillingos, S., & Kaback, H. R. (1996) Biochemistry 35, 3950-3956], conformational changes induced by binding of ligand or monoclonal antibody (mAb) 4B1 in the lactose permease of Escherichia coli were studied. Out of 31 single-Cys replacement mutants in helices I, V, VII, VIII, X, or XI, 4B1 binding alters the reactivity of Val238-->Cys (helix VII), Val331-->Cys (helix X), or single-Cys355 (helix XI) permease with N-ethylmaleimide (NEM) in right-side-out membrane vesicles. In addition, site-directed fluorescence spectroscopy shows that mAb 4B1 binding causes position 331 (helix X) in the permease to experience a more hydrophobic environment. In contrast, ligand binding elicits more widespread changes, as evidenced by enhancement of the NEM reactivity of Ala244-->Cys, Thr248-->Cys (helix VII), Thr265-->Cys (helix VIII), Val315-->Cys (helix X), Gln359-->Cys, or Met362-->Cys (helix XI) permease, none of which are altered by 4B1 binding. Furthermore, no effect of 4B1 is observed on the reactivity of Cys148 (helix V), Val264-->Cys, Gly268-->Cys, or Asn272-->Cys (helix VIII), positions which probably make direct contact with substrate. With respect to the N-terminal half of the permease, 4B1 binding causes a small increase in the reactivity of mutants Pro28-->Cys or Pro31-->Cys (helix I), while ligand binding causes much greater increases in reactivity. The findings indicate that 4B1 binding induces a structural change in the permease that is much less widespread than that induced by ligand binding.  相似文献   

19.
AIMS: We investigated the effect of angiotensin converting enzyme inhibitors (ACEIs) on postsynaptic adrenoceptor sensitivity and compared the effect of the lipophilic ACEI, quinapril, and that of hydrophilic agent, enalapril in human vessels. METHODS: Alpha-adrenoceptor sensitivity was evaluated using the dorsal hand vein compliance technique. The dose-response curves of vasoconstriction to phenylephrine and prostaglandin F2alpha were obtained in healthy male volunteers. RESULTS: The ACEIs shifted the dose-response curve of phenylephrine to the right and raised the median effective dose (ED50; 189.3 (57.6 ng min(-1)) of phenylephrine. Following quinapril administration, ED50 increased to 481.1 (101.8 ngmin(-1) compared with 266.8 (55.8 ngmin(-1) after enalapril (95% CI for differences; 31.1-397.5 ng min(-1)). Quinapril administration had no effect on the dose-response curve of PGF2alpha. CONCLUSIONS: ACE inhibition attenuates alpha-adrenoceptor sensitivity in human vessels. The effect of quinapril, a lipophilic ACEI, was greater than that of enalapril, a hydrophilic ACEI. Lipophilic ACEIs may be more potent in vasodilating effect than hydrophilic ACEIs. Angiotensin II concentration in tissue rather than that in plasma may contribute to the alpha-adrenoceptor sensitivity of the vessels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号