首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cashiers commonly report musculoskeletal discomfort in their shoulders, neck, and low back. This may result from excessive loading, awkward postures, insufficient rest, or task repetition. Recently, widespread introduction of reusable, consumer-supplied bags has introduced challenges in assessing exposures in this occupational group. Limited information exists on the physical demands associated with cashier work, particularly in the context of multiple bagging formats; this study was thus designed to generate a novel data set describing standard grocery packaging tasks. Twenty-five experienced cashiers completed 36 grocery packaging tasks consisting of twice performing all combinations of workload intensity (6, 20 items), workstation height (low, medium, high), and packaging type (plastic bags, reusable bags, bins). Surface electromyography (EMG) was measured bilaterally for 5 shoulder and 3 low back muscles and processed to generate integrated muscle demand for each combination evaluated. A mixed effect ANOVA was used to assess the influences of gender, intensity, package type, side, (muscles on the right or left side of the body) and workstation height on individual and total muscular demands. High workload intensity combined with several other factors to increase muscle demands, including using plastic or reusable bags for packaging and increasing workstation height. Gender and side also interacted with workload intensity to influence muscle activity. Encouraging rest breaks, the use of bins for packaging, and decreasing cashier workstation height may help reduce potentially injurious muscular effort for cashiers.  相似文献   

2.
Pushing and pulling tasks using carts and material handling devices have become more prevalent in occupational environments in an attempt to reduce the musculoskeletal risks associated with lifting. However, little change in low back disorder rates have been noted as tasks change from lifting to pushing and pulling indicating that we do not understand the mechanics of pushing and pulling well. Biomechanical assessments of pushing and pulling tasks using person-specific biologically assisted models offer a means to help understand how the spine is loaded under pushing and pulling conditions. However, critical components of these models must be adjusted so that they are sensitive to the different physiologic responses in the torso muscles expected during pushing and pulling compared to lifting tasks.The objective of this study was to modify an electromyography (EMG)-assisted biomechanical model designed to evaluate lifting tasks so that it can better represent the biomechanical forces expected during pushing and pulling tasks. Several key modifications were made. Based upon a literature review, changes in muscle cross-sectional area and muscle origins and insertions were made to better represent the geometry of the torso muscles. It was also necessary to adjust the length–force and velocity–force muscle relationships. Empirically derived length–force and velocity–force relationships were developed to independently represent the flexor and extensor musculature. These modifications were then systematically incorporated into the model.The model was exercised over several pushing and pulling conditions to assess the effect of these modifications on its ability to predict externally measured spinal moments. Results indicated that the alterations made to the preexisting EMG-assisted model resulted in acceptable model performance for pushing, pulling, and lifting activities.

Relevance to industry

The use of carts and material handling devices has become increasingly prevalent in industry, though little research has been done to examine the body's response. The modifications made to the biomechanical model would enable its use in the evaluation and design of material handling devices and pushing and pulling tasks.  相似文献   

3.
Lifting and lowering are common occupational tasks contributing to shoulder injury risk. Quantifying task interaction with physical demand can precipitate better workstation designs. Nineteen university-aged males performed one-handed, submaximal upward/downward manual force exertions at 70 hand locations; unilateral electromyography (EMG) of 14 muscles was recorded. EMG across planes was evaluated with ANOVA. Predictive equations for muscle activity throughout the reach envelope were developed with stepwise regression. Total muscle activity (sum of individual muscle activity) was most sensitive to vertical hand location for upward exertions, where activation at superior locations was 192% of values for inferior locations. For upward exertions, activation differences for hand location occurred along all anatomical axes, and along anterior/posterior and superior/inferior axes for downward exertions. Predictive equations were non-linear, reflecting complex muscular demand with three-dimensional hand location. This work details foundational exposure data for lifting/lowering exertions. Results are applicable to workstation design to minimise occupational shoulder muscular demands.

Practitioner Summary: Lifting and lowering in the workplace contribute to shoulder injury risk. Shoulder muscle activity magnitudes revealed a dependence on three-dimensional hand location in the reach envelope for a defined hand force. This information can inform evidence-based workstation designs that reduce shoulder muscular demands for numerous materials handling scenarios.  相似文献   


4.
《Ergonomics》2012,55(12):1551-1563
Abstract

In the investigation of lower back stress, the muscle forces of the erector spinae and the rectus abdominis are often calculated using the two-dimensional biomechanical model. These muscle forces are used to estimate the compressive forces at L5/S1 disc This paper presents a study of the muscle forces predicted by a two-dimensional biomechanical model during pushing and pulling and myoelectric activity from the corresponding muscles. The goal was to investigate whether a simple two muscle torso model would reasonably estimate the muscle actions in pushing and pulling tasks. Six subjects participated in the experiment. EMG (rms) value was used as an indicator of muscle forces. The results show high correlation between the predicted muscle forces and the measured root-mean-square EMG values in trunk pushing and pulling (r2=0.93) and hand pushing and pulling (r2=0.96) in an erect posture with hips braced but low in hand pushing and pulling using a free posture (r2=0.37).  相似文献   

5.
Lower back muscle forces in pushing and pulling   总被引:1,自引:0,他引:1  
K S Lee  D B Chaffin  A M Waikar  M K Chung 《Ergonomics》1989,32(12):1551-1563
In the investigation of lower back stress, the muscle forces of the erector spinae and the rectus abdominis are often calculated using the two-dimensional biomechanical model. These muscle forces are used to estimate the compressive forces at L5/S1 disc. This paper presents a study of the muscle forces predicted by a two-dimensional biomechanical model during pushing and pulling and myoelectric activity from the corresponding muscles. The goal was to investigate whether a simple two muscle torso model would reasonably estimate the muscle actions in pushing and pulling tasks. Six subjects participated in the experiment. EMG (rms) value was used as an indicator of muscle forces. The results show high correlation between the predicted muscle forces and the measured root-mean-square EMG values in trunk pushing and pulling (r2 = 0.93) and hand pushing and pulling (r2 = 0.96) in an erect posture with hips braced but low in hand pushing and pulling using a free posture (r2 = 0.37).  相似文献   

6.
Workspace design can often dictate the muscular efforts required to perform work, impacting injury risk. Within many environments, industrial workers often use sub-maximal forces in offset directions in to accomplish job tasks. The purpose of this research was to develop methods to estimate shoulder muscle activation during seated, static, sub-maximal exertions in off-axis (non-cardinal) directions. Surface EMG signals were recorded from 14 upper extremity muscles in 20 right-handed university aged, right-handed males (age: 22 ± 3 years, weight: 77.5 ± 11.1 kg, height 179.0 ± 7.0 cm) participated in this study. Each participant performed 60 submaximal exertions (40N) directed at 4 off-axis phase angles of 45° (45°, 135°, 225°, and 315°) in 3 planes (frontal, sagittal, and transverse) in 5 hand locations within a right handed reach envelope. The influence of hand location and force direction on muscle activity was evaluated with a forced-entry stepwise regression model. The ability of previously published on-axis prediction equations to predict muscle activity during these off-axis exertions was also evaluated. Within each muscle, activity levels were affected by both hand location and three-dimensional force direction and activation levels ranged from <1 to 37 %MVE. For each force direction there were 75 predictive equations selected and used, and the specific equation that best predicted activation depended on the muscle, exertion direction and hand location evaluated. This work assists ergonomic workplace design to minimize muscle demands during commonly performed off-axis exertions. These estimated demands can be employed to improve workplace design to reduce workplace injuries and enhance worker productivity.  相似文献   

7.
An ergonomic evaluation model for hand tools was developed and applied in a project aiming at assessment of work with plate shears. Measurement variables were physical, physiological and psychophysical. They included tool force and opening angle, wrist movements, muscular strain and fatigue, subjective rating of symptoms, and localization of symptoms, in a group of male professional platers. Different hand grips were studied in a series of cutting tasks (4.2 m cutting length). Results showed that working with conventional plate shears is extremely physically demanding. The peak force required was in the range of 26 to 72 per cent of the subjects' maximal hand grip force. There was ample localized muscle fatigue in the forearm. Psychophysical and electrophysiological data agreed with respect to aspects of muscular strain and fatigue. Workers' preferences in the short run seemed to focus on productivity rather than on ergonomic quality. There is a need for development of improved tools, based on formulated requirements.  相似文献   

8.
This study quantified changes in off-axis manual force production and upper extremity joint moments during sub-maximal one-handed push and pull tasks. Off-axis forces in the up/down and left/right directions were quantified in the presence or absence of constraints placed upon the direction of manual force application and/or arm posture. Resultant off-axis forces of 13.1% and 9.4% were produced for pulls and pushes, respectively. Off-axis forces during pulling were oriented downwards and to the right and were associated with a decreased should flexion moment when posture was constrained. Off-axis forces in the up/down direction were minimized with increased on-axis force level. Off-axis forces during pushing tended to be oriented to the left and were associated with increased elbow flexion moment when off-axis forces were allowed. By not accounting for these off-axis forces, we may not be accurately reflecting actionable muscle- and joint-level loading characteristics derived from biomechanically-based proactive ergonomics assessment approaches.

Practitioner Summary: Constrained arm postures and directions of manual force application influence the production of off-axis forces. As inaccurate estimation of true manual forces can markedly influence actionable outcomes of proactive ergonomic assessments, this study suggests that simplification of these estimates is insufficient and potentially misleading.  相似文献   


9.
Despite substantial epidemiological evidence relating overhead exertions with work‐related musculoskeletal disorders (WMSD) of the neck, effects of such exertions on the loading of neck or cervical spine musculature are not well understood. In this study, the effects of overhead pushing and pulling exertions on the loading of the cervical spine were evaluated using electromyography (EMG) and subjective discomfort ratings. Additionally, the role of gender as well as individual strength on the loading of neck musculature during such exertions was evaluated. Twenty‐four healthy individuals (12 men and 12 women) participated in this study. Each participant performed overhead pushing and pulling exertions, exerting 25%, 50%, and 75% of their respective maximum strengths. Overhead pushing exertions were found to be significantly more strenuous to the neck musculature than were the pulling exertions. Gender had no significant effect on the activities of the neck muscles. Participants with high strength, however, were able to exert more force at comparatively low muscle activation levels. Subjective discomfort ratings were strongly correlated with the EMG data. At various workplaces, avoiding overhead exertions is rather impossible due to material, interface, and site constraints. Based on the results of this study, however, during such exertions, an interchange between directions of force application could prevent sustained loading of the neck muscles, fatigue, and consequently the probability of neck WMSD incidents. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
《Ergonomics》2012,55(8):1099-1113
The objective of this study was to measure the three-dimensional hand forces people exert to initiate a cart push or pull for two cart loads: 73 and 181 kg, and three handle heights: knuckle, elbow, and shoulder heights. The cart used was equipped with 15.24 cm (6 in) diameter wheels. The floor was covered with carpet tiles. The laboratory-measured hand force exertions were compared to the minimum forces needed to push/pull the cart under the same conditions and to the psychophysical initial push/pull force limits. For pushing and pulling, the measured anterior-posterior hand forces were 2–2.4 times the minimum required forces. For the heavier cart load, lower forces were applied as handle height increased. Pull forces were 7% higher than push forces. The smallest vertical forces were measured at elbow height. Strength capability and gender did not have an effect on the applied forces. The mean strength percentile for the male sample was 64%, while the mean strength percentile for the female sample was 13% as determined from the Adjusted Torso Lift Strength Test and population strength data for this test. The comparison with the psychophysical limits indicated that the tasks were well within the maximum acceptable initial forces for males, but not for females.  相似文献   

11.
Shoulder musculoskeletal disorders (MSD) are frequently associated with the work activities that demand forceful arm exertions in pushing and pulling directions. Considering the ability of shoulder joint to exert forces in nearly any direction, our understanding of the shoulder muscles activation as affected by pushing and pulling exertions is limited. In this study the activation of seven shoulder muscles were studied for 10 male participants during pulling exertions performed in five directions (pull right, pull left, pull back, pull down and pull up) using three force levels (22.24 N, 33.36 N and 44.48 N). Exertions performed in pulling right and pulling up directions produced higher activation and received higher perceived exertion ratings than the exertions performed in the other directions. Rotator cuff and middle deltoid muscles activation were consistently higher during pulling up and pulling right exertions compared to the other muscles. A high correlation was found between the activation of rotator cuff and deltoid muscles and the perceived exertion ratings. The rotator cuff and middle deltoid muscles activation observed during the pulling up and pulling right exertions can be explained by the concavity compression mechanism which stabilizes the glenohumeral joint of shoulder.Relevance to industryThe muscle activation data expressed in terms of Maximum Voluntary Contraction (MVC) and perceived exertion ratings are widely used by the ergonomic practitioners to design and/or evaluate workplace exertions. This study provides such data for several shoulder muscles during pulling exertions performed under different conditions.  相似文献   

12.
Work-related upper extremity musculoskeletal disorders, including carpal tunnel syndrome, are prevalent among dentists and dental hygienists. An important risk factor for developing these disorders is forceful pinching which occurs during periodontal work such as dental scaling. Ergonomically designed dental scaling instruments may help reduce the prevalence of carpal tunnel syndrome among dental practitioners. In this study, eight custom-designed dental scaling instruments with different handle shapes were used by 24 dentists and dental hygienists to perform a simulated tooth scaling task. The muscle activity of two extensors and two flexors in the forearm was recorded with electromyography while thumb pinch force was measured by pressure sensors. The results demonstrated that the instrument handle with a tapered, round shape and a 10 mm diameter required the least muscle load and pinch force when performing simulated periodontal work. The results from this study can guide dentists and dental hygienists in selection of dental scaling instruments.  相似文献   

13.
The aim of the present study was to assess the activity levels of the sternocleidomastoid muscle and upper trapezius muscle during static postures under controlled and standardized conditions, and to determine whether the muscle activity differed between sexes. Electromyographic (EMG) activity was recorded unilaterally from the sternocleidomastoid and upper trapezius muscle in 17 participants whilst they were performing various postural tasks. EMG amplitude was measured by the root mean square values of the raw signals and normalized to peak maximum contractile values for each muscle (%MVC). The intensity of muscle activity was ranked as light (<3%MVC), moderate (3%MVC ≤ EMG ≤ 8%MVC), and substantial (>8%MVC). During most tasks the two muscles contracted light to moderately. Head leaning and shoulder shrugging postures yielded substantial muscle activity in both muscles. Muscle activity did not differ significantly between male and female participants (F = 3.1; p = 0.078). Our findings provided normative values, which will enhance future studies of muscle activity during work in a natural, unrestrained environment.  相似文献   

14.
The present study compared the effects of using one versus two display screens on cervical muscle activity of computer users. Healthy pain-free university students were recruited (11 males and 11 females), and surface electromyography in bilateral cervical erector spinae and upper trapezius (UT) muscles was measured. Each subject performed standardized text editing tasks for 15 min using a single screen and dual screens in a randomized order. In the dual screen condition, the primary screen was placed directly in front while the secondary screen was angled to the right of the user. Significant reductions of the 50th and 90th percentile amplitudes, representative of dynamic muscle loading, were found in the right UT muscle for dual screen condition. The 10th percentile muscle activity was similar in all muscles in the two conditions. These results suggest that viewing dual screens may be associated with different postural muscle activity compared to single screen.  相似文献   

15.
《Ergonomics》2012,55(3):288-301
The aims of the present study were: (1) to collect normative data of pinch and power grip strength with a newer digital dynamometer; (2) to study the ability of hand grip force matching using a hand dynamometer where the validity and reliability issues were studied; and (3) to study the relationship between hand grip force matching and muscle activities of three forearm and hand muscles. This study consisted of two experiments. One hundred and twenty subjects volunteered in the first experiment, where hand grip strength and hand force estimation data were collected. The second experiment had 14 volunteers, where muscle activities of the hand and forearm were collected during the tests of hand grip strength and hand force matching estimations. Results showed that the power grip and pinch grip strengths collected with a newer digital dynamometer were comparable to similar studies using older equipment. At the group level, the force matching method was largely accurate and consistent. Instructions to the subjects about force matching estimation were important to the accuracy and consistency of the estimated forces. Estimation in force matching might depend on perceptions of several major muscle activities.  相似文献   

16.
Muscular demands during common clinical ophthalmologic activities may contribute to the high prevalence of musculoskeletal health outcomes observed among ophthalmologists and other eye care physicians. Characterizations of the muscle activation patterns in the live ophthalmologic environment are lacking. This study was conducted to (i) characterize the frequencies and durations of common activities performed by ophthalmologists during routine clinical examinations, (ii) characterize neck and shoulder muscle activation patterns during the whole clinical work day, and (iii) explore differences in neck and shoulder muscle activation patterns between common clinical activities. Fifteen ophthalmologists performed routine patient examinations in an outpatient ophthalmology clinic while continuous surface electromyography measurements of the upper trapezius and anterior deltoid muscles were obtained. Results indicated that while computer use was the most frequently performed clinical activity, use of the indirect ophthalmoscope, followed by use of the slit lamp biomicroscope, required greater muscular demands than computer use or other clinical activities. Results provide evidence that the clinical activities of indirect ophthalmoscope and slit lamp biomicroscope use are appropriate for ergonomic intervention.  相似文献   

17.
18.
《Ergonomics》2012,55(15):1749-1769
The purpose of this study was to examine the interfering effects of physical and mental tasks on shoulder isometric strength in different postures. Fifteen volunteers (seven women, eight men) performed a series of isometric shoulder exertions at 30°, 60° and 90° of both shoulder flexion and abduction alone and with the addition of a 30% grip force, a mental task (Stroop test) and both additional tasks simultaneously. The shoulder tasks were completed either at maximal intensity, or while maintaining a shoulder posture without any additional effort. Surface electromyography (EMG) from seven muscles of the shoulder girdle and shoulder moment were collected for each 6 s shoulder exertion. When normalized to maximum exertion, no differences were found between genders and no differences existed between conditions when subjects maintained each posture without exerted force. In the maximal shoulder exertion trials, an increase in shoulder angle (in either plane) resulted in an increase in EMG in most muscles, while shoulder moment decreased in flexion and remained constant in abduction. Shoulder moments and muscle activation were greatest in the shoulder exertion alone condition followed by adding a 30% grip and the Stroop test, with the addition of both tasks further reducing the exerted shoulder moment and EMG. However, muscle activity did not always decrease with shoulder strength and remained elevated, indicating a complex coactivation pattern produced by an interfering role of the tasks. Overall, it was found that a mental task can have the same or greater effect as a concurrent grip and should be considered when assessing muscular loading in the workplace, as typical biomechanical modelling may underestimate internal loads. The results not only provide valuable shoulder strength data but also practical strength values, depending on additional tasks.  相似文献   

19.
《Ergonomics》2012,55(3):377-390
In pushing and pulling wheeled carts, the direction of force exertion may, beside the force magnitude, considerably affect musculoskeletal loading. This paper describes how force direction changes as handle height and force level change, and the effects this has on the loads on the shoulder and low back. Eight subjects pushed against or pulled on a stationary bar or movable cart at various handle heights and horizontal force levels while walking on a treadmill. The forces at the hands in the vertical and horizontal direction were measured by a forcetransducer. The forces, body movements and anthropometric data were used to calculate the net joint torques in the sagittal plane in the shoulder and the lumbosacral joint. The magnitudes and directions of forces did not differ between the cart and the bar pushing and pulling. Force direction was affected by the horizontal force level and handle height. As handle height and horizontal force level increased, the pushing force direction changed from 45° (SD 3.3°) downward to near horizontal, while the pulling force direction changed from pulling upward by 14° (SD 15.3°) to near horizontal. As a result, it was found that across conditions the changes in force exertion were frequently reflected in changes in shoulder torque and low back torque although of a much smaller magnitude. Therefore, an accurate evaluation of musculoskeletal loads in pushing and pulling requires, besides a knowledge of the force magnitude, knowledge of the direction of force exertion with respect to the body.  相似文献   

20.
Gielo-Perczak K  Matz S 《Ergonomics》2007,50(11):1856-1870
The geometrical dimensions of the bones that make up the glenohumeral joint could be a key factor in strength predictability. Understanding the mechanical influence of these dimensions (individually or in combination) on shoulder strength could help explain the mechanism of musculoskeletal disorders. The following study shows how a recently discovered geometric parameter, the area of glenoid asymmetry (AGA), is a good indicator of shoulder strength. A comprehensive study was conducted to test whether glenohumeral geometry, as measured through MRI scans, is correlated with upper arm strength. The isometric shoulder strength of 12 subjects during one-handed arm abduction and adduction in the coronal plane, in a range from 5 to 30 degrees , was correlated with the geometries of their glenoid fossae. All subjects were stronger during adduction than abduction for all arm positions. The results revealed a high correlation in the coronal plane between the AGA and mean maximum force and mean maximum moment when an arm was abducted and adducted in a range from 5 degrees to 30 degrees (0.80, p 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号