首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Malignant hyperthermia (MH) results from a defect of calcium release control in skeletal muscle that is often caused by point mutations in the ryanodine receptor gene (RYR1). In malignant hyperthermia-susceptible (MHS) muscle, calcium release responds more sensitively to drugs such as halothane and caffeine. In addition, experiments on the porcine homolog of malignant hyperthermia (mutation Arg615Cys in RYR1) indicated a higher sensitivity to membrane depolarization. Here, we investigated depolarization-dependent calcium release under voltage clamp conditions in human MHS muscle. Segments of muscle fibers dissected from biopsies of the vastus lateralis muscle of MHN (malignant hyperthermia negative) and MHS subjects were voltage-clamped in a double vaseline gap system. Free calcium was determined with the fluorescent indicator fura-2 and converted to an estimate of the rate of SR calcium release. Both MHN and MHS fibers showed an initial peak of the release rate, a subsequent decline, and rapid turn-off after repolarization. Neither the kinetics nor the voltage dependence of calcium release showed significant deviations from controls, but the average maximal peak rate of release was about threefold larger in MHS fibers.  相似文献   

2.
Using whole cell patch clamp recordings on unfertilized eggs of the ascidian Ciona intestinalis, we are able to detect ryanodine receptors within the oocytes. Our approach is based on measurements of the voltage-activated inward calcium currents. Two types of Ca2+ currents have been described on the oocyte membrane of Ciona: a low threshold slowly activating current, and a high threshold faster one. We show here that caffeine induces a decrease in the intensity of the Ca2+ currents, when applied either externally or internally from the mouth of a patch pipette. Caffeine application mimics fertilization which transiently decreases the high threshold Ca2+ current density during density during the first meiotic cycle. Ryanodine (> 1 nM) has an effect similar to caffeine. This partial decrease in Ca2+ current density elicited by caffeine or ryanodine is prevented by intracellular application of the calcium chelator BAPTA, then imputable to calcium release. In summary, the depolarization-induced Ca2+ current intensity allows monitoring of an intracellular calcium store which is sensitive to low concentrations of ryanodine in Ciona oocytes. Further identification of a ryanodine receptor was obtained by immunological staining with antibodies against mammalian skeletal muscle ryanodine receptor. Ryanodine receptors were asymmetrically localized in the cortex of Ciona eggs. We discuss the methodological relevance of our patch-clamp approach, in connection with the possible biological role of such a ryanodine receptor in the early stages of development.  相似文献   

3.
The ryanodine receptor (RYR)/Ca2+ release channel of avian cardiac muscle was localized by immunocytochemical techniques and biochemically characterized using isolated membrane and receptor protein fractions. Monoclonal antibody C3-33 raised against the canine cardiac RYR bound to the junctional sarcoplasmic reticulum of pigeon and finch hearts, both at peripheral couplings and at extended junctional sarcoplasmic reticulum (EJSR). Immunoblots of sarcoplasmic reticulum vesicles from pigeon and finch hearts showed this antibody recognized a single high molecular weight protein, which co-migrated with the canine M(r) 565,000 RYR/Ca2+ release channel polypeptide. The pigeon heart RYR bound [3H]ryanodine with high affinity in a Ca(2+)-dependent manner, comparable to the canine cardiac RYR. Purification of the pigeon RYR yielded a 30 S protein complex, which bound the maximum calculated amount of [3H]ryanodine ((440 +/- 60) pmol/mg protein), assuming one high affinity site/tetrameric 30 S RYR comprised of M(r) 565,000 polypeptides. Autoradiography of isolated finch cardiac myocytes indicated [3H]ryanodine binding throughout the cells. These results suggest that avian heart contains a single population of RYRs, and thereby support the hypothesis that avian EJSR contains functional calcium release channels which, because of the absence of transverse tubules, can be located micrometers away from the surface membrane in avian heart.  相似文献   

4.
Genetic predisposition to development of the idiopathic inflammatory myopathies is probably multifactorial. Major histocompatibility complex associations with these diseases provide the strongest evidence for a genetic component. In Caucasoids, haplotypes marked by B8/DR3 are associated with each of the clinical subgroups, except mixed connective tissue disease (DR4). The strongest associations are with inclusion body myositis, polymyositis in the presence of anti-Jo-1, and with antibodies to PM-Scl in overlap syndromes. The underlying mechanisms of these associations are probably different. Unique major histocompatibility complex associations are seen with other myositis-associated autoantibodies. The association can vary between racial groups as can the type of autoantibody produced within a disease subgroup, perhaps reflecting different T cell receptor repertoires or different inducing agents. The mapping of a gene for one form of hereditary inclusion body myositis to chromosome 9p1-q1 provides a lead for the investigation of sporadic inclusion body myositis, as does the expanding knowledge of genetic factors in Alzheimer's disease. The demonstration of deletions of mitochondrial DNA in the muscle of patients with inclusion body myositis raises the question of their role in the pathogenesis of the disease.  相似文献   

5.
Inclusion body myopathy is a progressive muscle disorder characterized by nuclear and cytoplasmic inclusions and vacuolation of muscle fibers. Affected muscle fibers contain deposits of congophilic amyloid, amyloid-beta immunoreactive filaments, and paired helical filaments, all of which are pathological hallmarks of Alzheimer's disease in brain. Accumulations of amyloid-beta and its precursor are thought to play important roles in the pathogenesis of both inclusion body myopathy and Alzheimer's disease. Overexpression of mutant forms of beta protein precursor in transgenic mice by neuron-specific promoters has been reported to cause amyloid deposits in the brain. Here we report that overexpression in transgenic mice of the signal plus 99-amino acid carboxyl-terminal sequences of beta protein precursor, under the control of a cytomegalovirus enhancer/beta-actin promoter, resulted in vacuolation and increasing accumulation of the 4-kd amyloid-beta and the carboxyl-terminus in skeletal muscle fibers during aging. These deposits in transgenic muscle only rarely showed Congo red birefringence. Thus, overexpression of part of beta protein precursor in transgenic mice led to development of some of the characteristic features of inclusion body myopathy. These mice may be a useful model of inclusion body myopathy, which shares a number of pathological markers with Alzheimer's disease.  相似文献   

6.
Recent advances of research on malignant hyperthermia(MH) were reviewed. The rate of Ca-induced Ca release(CICR) from the sarcoplasmic reticulum(SR) was measured on the skinned muscle fiber preparation of porcine and human MH. The rate of CICR was significantly increased both in porcine and human MH. These observations supported conclusion obtained by genetical studies that the ryanodine receptor (RYR1) was site of abnormality in most of porcine and part of human MH. The RYR1 is Ca release channel of skeletal muscle SR and CICR is one of main function of the channel. Subsequently, point mutation of RYR1 gene was found in the foot domain of the molecule. Heretofore, 9 kind of mutations were described in association of MH-susceptible(MHS) trait. 4 of them were accompanied by a form of congenital myopathy, central core disease(CCD). CCD is considered as an allelic disease of MH. But pathogenesis of peculiar morphological abnormality of CCD is mostly unknown. Mutations are identified only in half of familial MH cases, suggesting MH is heterogeneous. Recently, it was reported that mutation of the dihydropyridine receptor gene was associated with MHS in a french family. The dihydropyridine receptor is distributed on the transverse tubule membrane and constitutes the triad structure with RYR1.  相似文献   

7.
The central role of electrical activity and Ca2+ influx in motoneuron development raises important questions about the regulation of Ca2+ signalling induced by voltage-dependent Ca2+ influx. In the purified embryonic rat motoneuron preparation, we recorded barium currents through voltage-activated Ca2+ channels using the whole-cell configuration of the patch-clamp technique. We found that motoneurons express at least four types of high-voltage-activated Ca2+ channels, based on their kinetics, voltage-dependences and pharmacological properties. Of the sustained Ca2+ current activated at 0 mV from a holding potential of -100 mV, approximately 45% was omega-conotoxin-GVIA (1 microM) sensitive, 25% was omega-agatoxin-IVA (30 nM) sensitive and 20% was nitrendipine (250 nM) sensitive. The residual current, after applying these three antagonists, was an inactivating current that differs from classical T-type Ca2+ currents. Based on this pharmacology, changes in intracellular free Ca2+ concentrations were then monitored by Fura 2 digital imaging microspectrofluorimetry. Upon K+ depolarization, the intracellular Ca2+ transient induced by the activation of each type of Ca2+ channel appeared to be quantitatively proportional to their Ca2+ influx. The existence of a calcium-induced calcium release mechanism through activation of caffeine-, ryanodine-sensitive intracellular stores was then investigated. High doses of caffeine and low doses of ryanodine failed to increase intracellular free calcium concentrations and low concentrations of caffeine and high concentrations of ryanodine did not affect K+-induced intracellular free calcium concentration transients indicating both the absence of Ca2+-gated Ca2+-release channels and of a Ca2+-induced Ca2+ release mechanism. Together, these data provide evidence that embryonic motoneurons express multiple Ca2+ channels that function as important regulators of intracellular Ca2+ signalling and may be involved in their development.  相似文献   

8.
Pituitary adenylate cyclase-activating polypeptide (PACAP) causes both Ca2+ release and Ca2+ influx in bovine adrenal chromaffin cells. To elucidate the mechanisms of PACAP-induced Ca2+ release, we investigated expression of PACAP receptors and measured inositol trisphosphates (IP3), cyclic AMP, and the intracellular Ca2+ concentration in bovine adrenal medullary cells maintained in primary culture. RT-PCR analysis revealed that bovine adrenal medullary cells express the PACAP receptor hop, which is known to couple with both IP3 and cyclic AMP pathways. The two naturally occurring forms of PACAP, PACAP38 and PACAP27, both increased cyclic AMP and IP3, and PACAP38 was more potent than PACAP27 in both effects. Despite the effects of PACAP on IP3 production, the Ca2+ release induced by PA-CAP38 or by PACAP27 was unaffected by cinnarizine, a blocker of IP3 channels. The potencies of the peptides to cause Ca2+ release in the presence of cinnarizine were similar. The Ca2+ release induced by PACAP38 or by PACAP27 was strongly inhibited by ryanodine and caffeine. In the presence of ryanodine and caffeine, PACAP38 was more potent than PACAP27. PACAP-induced Ca2+ release was unaffected by Rp-adenosine 3',5'-cyclic monophosphothioate, an inhibitor of protein kinase A. Ca2+ release induced by bradykinin and angiotensin II was also inhibited by ryanodine and caffeine, but unaffected by cinnarizine. Although IP3 production stimulated by PACAP38 or bradykinin was abolished by the phospholipase C inhibitor, U-73122, Ca2+ release in response to the peptides was unaffected by U-73122. These results suggest that PACAP induces Ca2+ release from ryanodine/caffeine stores through a novel intracellular mechanism independent of both IP3 and cyclic AMP and that the mechanism may be the common pathway through which peptides release Ca2+ in adrenal chromaffin cells.  相似文献   

9.
2-Hydroxycarbazole was shown to induce Ca2+ release from skeletal muscle and cardiac muscle sarcoplasmic reticulum at concentrations between 100-500 microM. This release was blocked by both 1 mM tetracaine and 30 microM ruthenium red which inhibit the ryanodine receptor or by pre-treatment with 10 mM caffeine which depletes the ryanodine receptor-containing Ca2+ stores. This, in addition to the fact that 2-hydroxycarbazole has little effect on Ca2+ ATPase activity, indicates that it activates Ca2+ release through the ryanodine receptor. The apparent EC50 value for release from both skeletal muscle and cardiac muscle sarcoplasmic reticulum was approximately 200 microM and maximal release occurred at 400-500 microM, making it approximately 20 times more potent than caffeine. The dose-dependency in the extent of Ca2+ release induced by 2-hydroxycarbazole was also apparently highly cooperative for both preparations. That 2-hydroxycarbazole was able to mobilize Ca2+ from non-muscle cell microsomes and in intact TM4 cells (which contain ryanodine receptors), makes this compound a more potent and commercially available alternative to caffeine in studying the role of this intracellular Ca2+ channel in a variety of systems.  相似文献   

10.
Phototransduction in Drosophila occurs through the ubiquitous phosphoinositide-mediated signal transduction system. Major unresolved questions in this pathway are the identity and role of the internal calcium stores in light excitation and the mechanism underlying regulation of Ca2+ release from internal stores. Treatment of Drosophila photoreceptors with ryanodine and caffeine disrupted the current induced by light, whereas subsequent application of calcium-calmodulin (Ca-CaM) rescued the inactivated photoresponse. In calcium-deprived wild-type Drosophila and in calmodulin-deficient transgenic flies, the current induced by light was disrupted by a specific inhibitor of Ca-CaM. Furthermore, inhibition of Ca-CaM revealed light-induced release of calcium from intracellular stores. It appears that functional ryanodine-sensitive stores are essential for the photoresponse. Moreover, calcium release from these stores appears to be a component of Drosophila phototransduction, and Ca-CaM regulates this process.  相似文献   

11.
The amyloidogenic peptides, amyloid-beta (A beta) and human amylin, are the major constituents of amyloid deposits found in patients with the chronic degenerative disorders Alzheimer's disease (AD) and type 2 diabetes, respectively. Recent studies have shown that a variety of inflammatory proteins such as cytokines are associated with the amyloid deposits of AD brain tissues. Therefore, in the present study, we sought to determine whether A beta and/or human amylin could modulate the various inflammatory activities of eosinophils. We observed that human amylin but not A beta peptides inhibited the in vitro interleukin-5 (IL-5)-mediated survival of cord blood-derived eosinophils (CBEs) in a concentration-dependent manner. By contrast, rat amylin, a nonamyloidogenic peptide that is highly homologous to human amylin, failed to affect the IL-5-mediated survival of CBEs. Similar inhibitory effects of human amylin were observed for peripheral blood eosinophils. Human amylin also enhanced the release of the cytokine granulocyte-macrophage colony-stimulating factor by CBEs that were stimulated with the calcium ionophore A23187 but was incapable of directly stimulating CBEs to release cytokines. In addition, the A23187-induced release of the inflammatory lipid mediator leukotriene C4 by CBEs was augmented by human amylin. These results suggest that the amyloidogenic peptide human amylin is capable of amplifying the various inflammatory activities of eosinophils.  相似文献   

12.
Natriuretic peptides are cyclized peptides produced by cardiovascular and neural tissues. These peptides inhibit various secretory responses such as the release of renin, aldosterone and autonomic neurotransmitters. This report tests the hypothesis that atrial natriuretic peptide reduces dopamine efflux from an adrenergic cell line, rat pheochromocytoma cells, by suppressing intracellular calcium concentrations. The L-type calcium channel inhibitor, nifedipine, markedly suppressed dopamine release from depolarized PC12 cells, suggesting that calcium entering through this channel was the predominant stimulus for dopamine efflux. Atrial natriuretic peptide maximally reduced depolarization-evoked dopamine release 20 +/- 3% at a concentration of 100 nM and this effect was abolished by nifedipine, but not by pretreatment with the N-type calcium channel inhibitor, omega-conotoxin, or an inhibitor of calcium-induced calcium release, ryanodine. In cells loaded with Fura-2, atrial natriuretic peptide both augmented depolarization-induced increases of intracellular free calcium concentrations and accelerated the depolarization-induced quenching of the Fura-2 signal by manganese, findings consistent with enhanced conductivity of calcium channels. Dopamine efflux induced by either the calcium ionophore, A23187, or staphylococcal alpha toxin was attenuated by atrial natriuretic peptide. Additionally, a natriuretic peptide interacting solely with the natriuretic peptide C receptor in these cells, C-type natriuretic peptide, also suppressed calcium-induced dopamine efflux in permeabilized cells. These data are consistent with natriuretic peptides attenuating catecholamine exocytosis in response to calcium but inconsistent with the neuromodulatory effect resulting from a reduction in intracellular calcium concentrations within pheochromocytoma cells.  相似文献   

13.
A fusion protein encompassing Gly341 of the skeletal muscle ryanodine receptor was used to raise monoclonal antibodies; epitope mapping demonstrates that monoclonal antibody 419 (mAb419) reacts with a sequence a few residues upstream from Gly341. The mAb419 was then used to probe ryanodine receptor (RYR) functions. Our results show that upon incubation of triads vesicles with mAb419 the Ca2+-induced Ca2+ release rate at pCa 8 was increased. Equilibrium evaluation of [3H]ryanodine binding at different [Ca2+] indicates that mAb419 shifted the half-maximal [Ca2+] for stimulation of ryanodine binding to lower value (0.1 versus 1.2 microM). Such functional effects may be due to a direct action of the Ab on the Ca2+ binding domain of the RYR or to the perturbation by the Ab of the intramolecular interaction between the immunopositive region and regulatory domain of the RYR. The latter hypothesis was tested directly using the optical biosensor BIAcore (Pharmacia Biotech Inc.): we show that the immunopositive RYR polypeptide is able to interact with the native RYR complex. Ligand overlays with immunopositive digoxigenin-RYR fusion protein indicate that such an interaction might occur with a calmodulin binding domain (defined by residues 3010-3225) and with a polypeptide defined by residues 799-1172. In conclusion our results suggest that the stimulation by the mAb419 of the RYR channel activity is due to the perturbation of an intramolecular interaction between the immunopositive polypeptide and a Ca2+ regulatory site probably corresponding to a calmodulin binding domain.  相似文献   

14.
Polymyositis, dermatomyositis, and inclusion body myositis, although immunopathologically distinct, share 3 dominant histological features: inflammation, fibrosis, and loss of muscle fibers. Progress in molecular immunology and immunogenetics has enhanced our understanding of these cellular processes. Based on the T-cell receptor gene rearrangement, the autoinvasive CD8+ T cells in polymyositis and inclusion body myositis, but not dermatomyositis, are specifically selected and clonally expanded in situ by heretofore unknown muscle-specific autoantigens. The messenger RNA of cytokines is variably expressed, except for a persistent up-regulation of interleukin 1beta in inclusion body myositis and transforming growth factor beta in dermatomyositis. In inclusion body myositis, the interleukin 1, secreted by the chronically activated endomysial inflammatory cells, may participate in the formation of amyloid because it up-regulates beta-amyloid precursor protein (beta-APP) gene expression and beta-APP promoter and colocalizes with beta-APP within the vacuolated muscle fibers. In dermatomyositis, transforming growth factor beta is overexpressed in the perimysial connective tissue but is down-regulated after successful immunotherapy and reduction of inflammation and fibrosis. The degenerating muscle fibers express several antiapoptotic molecules, such as Bcl-2, and resist apoptosis-mediated cell death. In myositis, several of the identified molecules and adhesion receptors play a role in the process of inflammation, fibrosis, and muscle fiber loss, and could be targets for the design of semispecific therapeutic interventions.  相似文献   

15.
Amyloid beta-peptide (Abeta) is known to accumulate in senile plaques of Alzheimer's disease (AD) patients and is now widely believed to play a major role in the disease. Two populations of peptides occur terminating either at amino acid 40 or at amino acid 42 (Abeta1-40 and Abeta1-42). Alternative N-terminal cleavages produce additional heterogeneity (Abetax-40 and Abetax-42). Peptides terminating at amino acid 42 are believed to be the major player in sporadic AD as well as familial AD (FAD). Whereas the cellular mechanism for the generation of Abeta terminating at amino acid 40 is well understood, very little is known about the cleavage of Abeta after amino acid 42. By using two independent methods we demonstrate intracellular Abeta1-42 as well as Abetax-42 but less Abetax-40 and Abeta1-40 in kidney 293 cells stably transfected with wild type beta-amyloid precursor protein (betaAPP) or the FAD-associated Val/Gly mutation. Moreover, retention of betaAPP within the endoplasmic reticulum (ER) by treatment with brefeldin A does not block the cleavage at amino acid 42 but results in an increased production of all species of Abeta terminating at amino acid 42. This indicates that the cleavage after amino acid 42 can occur within the ER. Treatment of cells with monensin, which blocks transport of (betaAPP) within the Golgi causes a marked accumulation of intracellular Abetax-42 and Abetax-40. Therefore these experiments indicate that the gamma-secretase cleavage of Abeta after amino acid 42 can occur within the ER and later within the secretory pathway within the Golgi. Moreover inhibition of reinternalization by cytoplasmic deletions of betaAPP as well as inhibition of intracellular acidification by NH4Cl does not block intracellular Abeta1-42 or Abetax-42 production.  相似文献   

16.
We studied spiking neurons isolated from turtle retina by the whole cell version of the patch clamp. The studied cells had perikaryal diameters > 15 microns and fired multiple spikes in response to depolarizing current steps, indicating they were ganglion cells. In symmetrical [Cl-], currents elicited by puffs of 100 microM gamma-aminobutyric acid (GABA) were inward at a holding potential of -80 mV. All of the GABA-evoked current was blocked by SR95331 (20 microM), indicating that it was mediated by a GABAA receptor. The GABA-evoked currents were unaltered by eliciting a transmembrane calcium current either just before or during the response to GABA. On the other hand caffeine (10 mM), which induces Ca2+ release from intracellular stores, inhibited the GABA-evoked current on average by 30%. The caffeine effect was blocked by introducing the calcium buffer bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) into the cell but was unaffected by replacing [Ca2+]o with equimolar cobalt. Thapsigargin (10 microM), an inhibitor of intracellular calcium pumps, and ryanodine (20 microM), which depletes intracellular calcium stores, both markedly reduced a caffeine-induced inhibition of the GABA-evoked current. Another activator of intracellular calcium release, inositol trisphosphate (IP3; 50 microM), also progressively reduced the GABA-induced current when introduced into the cell. Dibutyryl adenosine 3'5'-cyclic monophosphate (cAMP; 0.5 mM), a membrane-permeable analogue of cAMP, did not reduce GABA-evoked currents, suggesting that cAMP-dependent kinases are not involved in suppressing GABAA currents, whereas calmidazolium (30 microM) and cyclosporin A (20 microM), which inhibit Ca/calmodulin-dependent phosphatases, did reduce the caffeine-induced inhibition of the GABA-evoked current. Alkaline phosphatase (150 micrograms/ml) and calcineurin (300 micrograms/ml) had a similar action to caffeine or IP3. Antibodies directed against the ryanodine receptor or the IP3 receptor reacted with the great majority of neurons in the ganglion cell layer. We found that these two antibodies colocalized in large ganglion cells. In summary, intracellular calcium plays a role in reducing the currents elicited by GABA, acting through GABAA receptors. The modulatory action of calcium on GABA responses appears to work through one or more Ca-dependent phosphatases.  相似文献   

17.
The insoluble amyloid deposited extracellularly in the brains of patients with Alzheimer's disease (AD) is composed of amyloid beta protein, a approximately 4-kDa secreted protein that is derived from a set of large proteins collectively referred to as the amyloid beta protein precursor (betaAPP). During normal processing the betaAPP is cleaved by beta secretase, producing a large NH2-terminal secreted derivative (sAPPbeta) and a COOH-terminal fragment beginning at Abeta1, which is subsequently cleaved by gamma secretase releasing secreted Abeta. Most secreted Abeta is Abeta1-40, but approximately 10% of secreted Abeta is Abeta1-42. Alternative betaAPP cleavage by alpha secretase produces a slightly longer NH2-terminal secreted derivative (sAPPalpha) and a COOH-terminal fragment beginning at Abeta17, which is subsequently cleaved by gamma secretase releasing a approximately 3-kDa secreted form of Abeta (P3). Several of the betaAPP isoforms that are produced by alternative splicing contain a 56-amino acid Kunitz protease inhibitor (KPI) domain known to inhibit proteases such as trypsin and chymotrypsin. To determine whether the KPI domain influences the proteolytic cleavages that generate Abeta, we compared Abeta production in transfected cells expressing human KPI-containing betaAPP751 or KPI-free betaAPP695. We focused on Abetas ending at Abeta42 because these forms appear to be most relevant to AD. Using specific sandwich enzyme-linked immunosorbent assays, we analyzed full-length Abeta1-42 and total Abeta ending at Abeta42 (Abeta1-42 + P3(42)). In addition, we analyzed the large secreted derivatives produced by alpha secretase (sAPPalpha) and beta secretase (sAPPbeta). In mouse teratocarcinoma (P19) cells expressing betaAPP695 or betaAPP751, expression of the KPI-containing betaAPP751 resulted in the secretion of a lower percentage of P3(42) and sAPPalpha and a correspondingly higher percentage of Abeta1-42 and sAPPbeta. Similar results were obtained in human embryonic kidney (293) cells. These results indicate that expression of the KPI domain reduces alpha secretase cleavage so that less P3 and relatively more full-length Abeta are produced. Thus, in human brain and in animal models of AD, the amount of KPI-containing betaAPP produced may be an important factor influencing Abeta deposition.  相似文献   

18.
Toxoplasma gondii tachyzoites markedly alter the profile of eicosanoids released by human mononuclear phagocytes. Freshly isolated, 2-h adherent human monocytes release both cyclooxygenase (e.g., thromboxane [TX] B2, prostaglandin [PG] E2) and 5-lipoxygenase (e.g., leukotriene [LT] B4, LTC4) products of arachidonic acid metabolism after stimulation by the calcium ionophore A23187 or ingestion of opsonized zymosan particles or heat-killed T. gondii. However, after incubation with viable T. gondii, normal and chronic granulomatous disease monocytes release only the cyclooxygenase products TXB2 and PGE2 and fail to form LTB4, LTC4, or other 5-lipoxygenase products. Monocytes maintained in culture for 5 d lose this capacity to release TXB2 and PGE2 after incubation with T. gondii. T. gondii significantly inhibit calcium ionophore A23187-induced LTB4 release by monocyte-derived macrophages; heat-killed organisms do not affect this calcium ionophore A23187-induced release of LTB4. T. gondii-induced inhibition of LTB4 release by calcium ionophore A23187-stimulated monocyte-derived macrophage is reversed by interferon (IFN)-gamma treatment of the monolayers. LTB4 induced extensive damage to the cellular membranes and cytoplasmic contents of the organisms as observed by transmission electron microscopy. Exogenous LTB4 (10(-6) M) induced intracellular killing of ingested T. gondii by non-IFN-gamma-treated monocyte-derived macrophages. IFN-gamma-induced antitoxoplasma activity in monocyte-derived macrophages was inhibited by the selective 5-lipoxygenase inhibitor zileuton but not by the cyclooxygenase inhibitor indomethacin. These findings suggest a novel role for 5-lipoxygenase arachidonic acid products in human macrophage IFN-gamma-induced antitoxoplasma activity.  相似文献   

19.
The presence and distribution of intracellular Ca2+ release pathways in olfactory bulb neurons were studied in dissociated cell cultures. Histochemical techniques and imaging of Ca2+ fluxes were used to identify two major intracellular Ca2+ release mechanisms: inositol 1, 4,5-triphosphate receptor (IP3R)-mediated release, and ryanodine receptor-mediated release. Cultured neurons were identified by immunocytochemistry for the neuron-specificmarker beta-tubulin III. Morphometric analyses and immunocytochemistry for glutamic acid-decarboxylase revealed a heterogeneous population of cultured neurons with phenotypes corresponding to both projection (mitral/tufted) and intrinsic (periglomerular/granule) neurons of the in vivo olfactory bulb. Immunocytochemistry for the IP3R, and labeling with fluorescent-tagged ryanodine, revealed that, irrespective of cell type, almost all cultured neurons express IP3R and ryanodine binding sites in both somata and dendrites. Functional imaging revealed that intracellular Ca2+ fluxes can be generated in the absence of external Ca2+, using agonists specific to each of the intracellular release pathways. Local pressure application of glutamate or quisqualate evoked Ca2+ fluxes in both somata and dendrites in nominally Ca2+ free extracellular solutions, suggesting the presence of IP3-dependent Ca2+ release. These fluxes were blocked by preincubation with thapsigargin and persisted in the presence of the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. Local application of caffeine, a ryanodine receptor agonist, also evoked intracellular Ca2+ fluxes in the absence of extracellular Ca2+. These Ca2+ fluxes were suppressed by preincubation with ryanodine. In all neurons, both IP3- and ryanodine-dependent release pathways coexisted, suggesting that they interact to modulate intracellular Ca2+ concentrations.  相似文献   

20.
The Bio 14.6 Cardiomyopathic Syrian Hamster (CMH) has an autosomal recessive disease characterized by intracellular calcium overload, cardiac and skeletal myopathies and premature death from congestive heart failure. Early treatment of these animals with the calcium antagonist, verapamil (V), prevents the development of the disease. We have previously provided evidence supporting a specific defect in the ryanodine-sensitive SR calcium release channel (SRCRC) in CMH. We now provide physiologic and biochemical evidence that V modulates SRCRC. Papillary muscles prepared from F1B control hamsters (F1B) revealed an enhanced inotropic responsiveness to V and ryanodine (R) with age, not seen with CMH. CMH papillary muscles demonstrated paradoxical positive inotropic effects of V and R not shared with F1B. The positive inotropic effects of V and R were not additive. V enhanced the affinity (decreased KD) of [3H]ryanodine binding to cardiac membranes. Thus, V may prevent the overt manifestations of genetic disease in CMH by modulating a defective ryanodine-sensitive SR release channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号