首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper describes the generation of mirror surfaces and, to this end, a personal computer controlled prototype ultra-precision lathe has been built. In addition, the cutting theory (derived from dislocation theory) capable of explaining the ultra-precision cutting mechanism, has been studied.The machined surface roughness achieved with aluminium was Rmax = 0.01 μm using the new lathe, and a flatness of 0.1 μm/ø50 mm was achieved. The shearing stress computed, based on dislocation theory, closely coincided with that obtained from macroscopic machining experiments. The personal computer controlled ultra-precision lathe capable of these results has successfully been constructed on an experimental basis.  相似文献   

2.
Nanogrinding of a fine-grained WC-Co composite was developed to achieve an optical quality surface without further polishing. Direct planar grinding was conducted with a CNC grinding machine using a metal-bond diamond wheel of grit size of 15 μm, under the nanogrinding conditions selected. The ground planar surfaces were examined using laser and optical interferometry, atomic force microscopy, and scanning electron microscopy to measure flatness, surface roughness, and surface integrity as a function of grinding conditions. Damage-free, planar mirror surfaces with a flatness (peak-to-valley, PV) at the submicron scale and surface roughness <5 nm Ra were obtained.  相似文献   

3.
This paper presents the results of experimental work in dry turning of austenitic stainless steels (AISI 304 and AISI 316) using CVD multi-layer coated cemented carbide tools. The turning tests were conducted at four different cutting speeds (120, 150, 180 and 210 m/min) while feed rate and depth of cut were kept constant at 0.16 mm/rev and 1 mm, respectively. The cutting tools used were TiC/TiCN/TiN and TiCN/TiC/Al2O3 coated cementide carbides. The influences of cutting speed, cutting tool coating top layer and workpiece material were investigated on the machined surface roughness and the cutting forces. The worn parts of the cutting tools were also examined under scanning electron microscope (SEM). The results showed that cutting speed significantly affected the machined surface roughness values. With increasing cutting speed, the surface roughness values decreased until a minimum value is reached beyond which they increased.  相似文献   

4.
In this paper, results from an optical technique for measuring surface roughness using image analysis of speckle pattern images are presented. The technique coined as statistical properties of binary images (SPBI) utilizes the combined effects of speckle and scattering phenomena. The speckle patterns obtained with a He–Ne laser were binarized and examined. The parameters such as bright and dark regions and their ratios obtained from this model to evaluate the surface roughness were compared with the surface roughness parameter Ra obtained from a profilometer. It was found that there is a strong relationship between these parameters and Ra, especially in the range of λ<Ra<2λ where λ is He–Ne laser wavelength. Although, it is a relative method, it has great potential to be used for in-process measurement and automation due to the simplicity of optical system used. The proposed method for the surface roughness combined with a non-contact optical measuring system is applied to samples from 0.5825 to 1.9 μm of steel (CK 45) through CNC face-milling process.  相似文献   

5.
Predictive Modeling of Surface Roughness in Grinding of Ceramics   总被引:1,自引:0,他引:1  
The surface roughness represents the quality of ground surface since irregularities on the surface may form nucleation for cracks or corrosion and thus degrade the mechanical properties of the component. The surface generation mechanism in grinding of ceramic materials could behave as a mixture of plastic flow and brittle fracture, while the extent of the mixture hinges upon certain process parameters and material properties. The resulting surface profile can be distinctively different from these two mechanisms. In this article, a physics-based model is proposed to predict the surface roughness in grinding of ceramic materials considering the combined effect of brittle and ductile material removal. The random distribution of cutting edges is first described by a Rayleigh probability function. Afterwards, surface profile generated by brittle mode grinding is characterized via indentation mechanics approach. Last, the surface roughness is modeled through a probabilistic analysis of ductile and brittle generated surface profile. The model expresses the surface finish as a function of the wheel microstructure, the process conditions, and the material properties. The predictions are compared with experimental results from grinding of silicon carbide and silicon nitride workpieces (SiC and Si3N4, respectively) using a diamond wheel.  相似文献   

6.
The present paper reports on the development of a micro/meso grinding technology using inclined resin bond diamond cup wheels for machining spherical end faces of fibre optic connectors. The ground spherical end faces obtained using the wheel of grit size of 4 μm have an average roughness (Ra) value of 7 nm in the fibre area and a profile error of below 0.4 μm. The corresponding average return and insertion losses are 55 and 0.1 dB, respectively. The results are competitive to those obtained from the polishing process that is currently used in industries. Furthermore, this study has revealed the relationships between the ground surface quality characterized by roughness and profile accuracy and the optic performance evaluated by insertion and return losses.  相似文献   

7.
A study has been made of the theory and techniques of turning precise circular components. The possibility of such high accuracy cylindrical machining was analysed according to the principle of making a precise circle. In the study, a form of chucking-type preciison cylindrical machining was developed by combining an insensitive vibration cutting mechanism - using a main spindle system which features an air bearing - with superposition superfinishing. In the first process, the work is chucked on the main spindle and machined using a continuously and systematically pulsating cutting force. In the second process, the work is finished by a newly developed superposition superfinishing device which features equivalent grades of ultrasonic vibration stone. Key points of the techniques are a torsional vibration mode tool for producing accurate, high amplitude vibration of the cutting point, and a contrivance for making accurate movements of the superposition superfinishing device. Machined roundness of 0.1–0.2 μm and surface roughness of 0.03–0.09 μm Rmax were obtained with plain carbon steels, stainless steels and hardened steels (HRC 41, 53, 60). It is considered that turning to roundness ≈ 0, cylindricity ≈ 0 and surface roughness ≈ 0 can be realized by means of this new machining process and its lathe.  相似文献   

8.
A load-cell-embedded burnishing tool has been newly developed and integrated with a machining center, to improve the surface roughness of the PDS5 plastic injection mold steel. Either the rolling-contact type or the sliding-contact type was possible for the developed ball burnishing tool. The characteristic curves of burnishing force vs. surface roughness for the PDS5 plastic injection mold steel using the developed burnishing tool for both the rolling-contact type and the sliding-contact type, have been investigated and constructed, based on the test results. The optimal plane surface burnishing force for the PDS5 plastic injection mold steel was about 420 N for the rolling-contact type and about 470 N for the sliding-contact type, based on the results of experiments. A force compensation strategy that results in the constant optimal normal force for burnishing an inclined surface or a curved surface, has also been proposed to improve the surface roughness of the test objects in this study. The surface roughness of a fine milled inclined surface of 60 degrees can be improved from Ra 3.0 μm on average to Ra 0.08 μm (Rmax 0.79 μm) on average using force compensation, whereas the surface roughness was Ra 0.35 μm (Rmax 4.56 μm) on average with no force compensation.  相似文献   

9.
This study investigates the possibilities of automated spherical grinding and ball burnishing surface finishing processes in a freeform surface plastic injection mold steel PDS5 on a CNC machining center. The design and manufacture of a grinding tool holder has been accomplished in this study. The optimal surface grinding parameters were determined using Taguchi’s orthogonal array method for plastic injection molding steel PDS5 on a machining center. The optimal surface grinding parameters for the plastic injection mold steel PDS5 were the combination of an abrasive material of PA Al2O3, a grinding speed of 18000 rpm, a grinding depth of 20 μm, and a feed of 50 mm/min. The surface roughness Ra of the specimen can be improved from about 1.60 μm to 0.35 μm by using the optimal parameters for surface grinding. Surface roughness Ra can be further improved from about 0.343 μm to 0.06 μm by using the ball burnishing process with the optimal burnishing parameters. Applying the optimal surface grinding and burnishing parameters sequentially to a fine-milled freeform surface mold insert, the surface roughness Ra of freeform surface region on the tested part can be improved from about 2.15 μm to 0.07 μm.  相似文献   

10.
An ant colony based optimisation procedure has been developed to optimise grinding conditions, viz. wheel speed, workpiece speed, depth of dressing and lead of dressing, using a multi-objective function model with a weighted approach for the surface grinding process. The procedure evaluates the production cost and production rate for the optimum grinding condition, subjected to constraints such as thermal damage, wheel wear parameters, machine tool stiffness and surface finish. The results are compared with Genetic Algorithm (GA) and Quadratic Programming (QP) techniques.Nomenclature a p down feed of grinding (mm/pass) - a w total thickness of cut (mm) - A o initial wear flat-area percentage (%) - b e empty width of grinding (mm) - b s width of wheel (mm) - b w width of workpiece (mm) - B k positive definite approximation of the Hessian - doc depth of dressing (mm) - c d cost of dressing ($) - c s cost of wheel per mm3 ($/mm3) - CT total production cost ($/pc) - CT * expected production cost limit ($/pc) - d g grind size (mm) - D e diameter of wheel (mm) - f b cross feed rate (mm/pass) - G grinding ratio - k a constant dependent on coolant and wheel grind type - k u wear constant (mm-1) - k c cutting stiffness (N/mm) - k m static machine stiffness (N/mm) - k s wheel wear stiffness (N/mm) - L lead of dressing (mm/rev) - L e empty length of grinding (mm) - L w length of workpiece (mm) - M c cost per hour labour and administration ($/h) - N d total number of pieces to be grouped during the life of dressing (pc) - N t batch size of workpieces (pc) - N td total number of workpieces to be grouped during the life of dressing (pc) - P number of workpieces loaded on the table (pc) - R a surface roughness (µm) - R a* surface finish limit during rough grinding (µm) - R c workpiece hardness (Rockwell hardness number) - R em dynamic machine characteristics - S d distance of wheel idling (mm) - S p number of spark out grinding (pass) - t sh time of adjusting machine tool (min) - t i time of loading and unloading workpiece (min) - T ave average chip thickness during grinding (µm) - U specific grinding energy (J/mm) - U * critical specific grinding energy (J/mm3) - V r speed of wheel idling (mm/min) - V s wheel speed (m/min) - V w workpiece speed (m/min) - VOL wheel bond percentage (%) - WRP workpiece removal parameter (mm3/min-N) - WRP * workpiece removal parameter limit (mm3/min-N) - WWP wheel wear parameter (mm3/min-N) - W i weighting factor, 0W i1 (W 1+W 2+W 3=1)  相似文献   

11.
Two random profile precision roughness calibration specimens with Ra = 0.028 and 0.043 μm are compared with their electroformed replicas. Measurements of surface texture and roughness parameter values show very good agreement. Fluctuations in the Ra values across the replicas track those across the masters to within 1.8 nm. However, the form errors of the replicas, approximately 0.6 μm over a 3.2 × 2.6 mm2 area, are much bigger than those of the masters, and their hardness (HV = 243) is not as good as the master specimens' (HV = 852).  相似文献   

12.
Focused ion beam (FIB) sputtering is used to shape a variety of cutting tools with dimensions in the 15–100 μm range and cutting edge radii of curvature of 40 nm. The shape of each microtool is controlled to a pre-specified geometry that includes rake and relief features. We demonstrate tools having rectangular, triangular, and other complex-shaped face designs. A double-triangle tip on one tool is unique and demonstrates the versatility of the fabrication process. The FIB technique allows observation of the tool during fabrication, and, thus, reproducible features are generated with sub-micron precision. Tools are made from tungsten carbide, high-speed tool steel, and single crystal diamond. Application of FIB-shaped tools in ultra-precision microgrooving tests shows that the cross-section of a machined groove is an excellent replication of the microtool face. Microgrooves on 40–150 μm pitch are cut into 3 mm diameter polymer rods, for groove arc lengths greater than 12 cm. The surface finish of machined features is also reported; groove roughness (Ra) is typically less than 0.2 μm. Ultra-precision machining of cylindrical substrates is extended to make bound metal microcoils having feature sizes of 20–40 μm.  相似文献   

13.
Conventional grinding of silicon substrates results in poor surface quality unless they are machined in ductile mode on expensive ultra-precision machine tools. However, precision grinding can be used to generate massive ductile surfaces on silicon so that the polishing time can be reduced immensely and surface quality improved. However, precision grinding has to be planned with reliability in advance and the process has to be performed with high rates of reproducibility. Therefore, this work reports the empirical models developed for surface parameters R a, R max, and R t with precision grinding parameters, depths of cut, feed rates, and spindle speeds using conventional numerical control machine tools with Box–Behnken design. Second-order models are developed for the surface parameters in relation to the grinding parameters. Analysis of variance is used to show the parameters as well as their interactions that influence the roughness models. The models are capable of navigating the design space. Also, the results show large amounts of ductile streaks at depth of cut of 20?μm, feed rate of 6.25?mm/min, and spindle speed of 70,000?rpm with a 43-nm R a. Optimization experiments by desirability function generate 37-nm R a, 400-nm R max, and 880-nm R t with massive ductile surfaces.  相似文献   

14.
Surface roughness of the workpiece is an important parameter in machining technology. Wiper inserts have emerged as a significantly class of cutting tools, which are increasingly being utilized in last years. This study considers the influence of the wiper inserts when compared with conventional inserts on the surface roughness obtained in turning. Experimental studies were carried out for the carbon steel AISI 1045 because of its great application in manufacturing industry. Surface roughness is represented by different amplitude parameters (Ra, RzD, R3z, Rq, Rt, Ra/Rq, Rq/Rt, Ra/Rt). With wiper inserts and high feed rate it is possible to obtain machined surfaces with Ra < 0.8 μm (micron). Consequently it is possible to get surface quality in workpiece of mechanics precision without cylindrical grinding operations.  相似文献   

15.
This paper provides a new methodology for the integrated optimization of cutting parameters and tool path generation (TPG) based on the development of prediction models for surface roughness and machining time in ultraprecision raster milling (UPRM). The proposed methodology simultaneously optimizes the cutting feed rate, the path interval, and the entry distance in the feed direction to achieve the best surface quality in a given machining time. Cutting tests are designed to verify the integrated optimization methodology. The experimental results show that, in the fabrication of plane surface, the changing of entry distance improves surface finish about 40 nm (R a ) and 200 nm (R t ) in vertical cutting and decreases about 8 nm (R a ) and 35 nm (R t ) in horizontal cutting with less than 2 s spending extra machining time. The optimal shift ratio decreases surface roughness about 7 nm (R a ) and 26 nm (R t ) in the fabrication of cylinder surfaces, while the total machining time only increases 2.5 s. This infers that the integrated optimization methodology contributes to improve surface quality without decreasing the machining efficiency in ultraprecision milling process.  相似文献   

16.
In this paper we present a method for the vertical calibration of a metrological atomic force microscope (AFM), which can be applied to most AFM systems with distance sensors. A thorough analysis describes the physical z-coordinate of an imaged surface as a function of the observed and uncorrected z-coordinate and the horizontal position. The three most important correction terms in a Taylor expansion of this function are identified and estimated based on series of measurements on a calibrated step height and a flat reference surface. Based on this calibration a number of step heights are calibrated by the AFM with measured values consistent with reference values, where available. Relative standard uncertainty of about 0.5% is achieved for step heights above 200 nm. For step heights below 50 nm, the standard uncertainty is about 0.5 nm. While a calibration of step heights done by AFM and interference microscopy can be compared directly as demonstrated here, this is not straightforward for roughness measurement. To asses this, the exact same area on an important applied surface (a hip joint prosthesis) was measured by both AFM and interference microscopy. Similarities in the images were seen; however, the calculated roughness was significantly different (Rq=3 and 1.5 nm). Applying a low-pass filter with a cut-off wavelength of λc=1.5 μm, the appearance of the images and the calculated roughness become almost identical. This strongly suggests that the two methods are consistent, and that the observed differences in shape and roughness in the nanometer range can be explained by the limited lateral resolution of the interference microscope.  相似文献   

17.
Modelling and optimisation are necessary for the control of any process to achieve improved product quality, high productivity and low cost. The grinding of silicon carbide is difficult because of its low fracture toughness, making it very sensitive to cracking. The efficient grinding of high performance ceramics involves the selection of operating parameters to maximise the MRR while maintaining the required surface finish and limiting surface damage. In the present work, experimental studies have been carried out to obtain optimum conditions for silicon carbide grinding. The effect of wheel grit size and grinding parameters such as wheel depth of cut and work feed rate on the surface roughness and damage are investigated. The significance of these parameters, on the surface roughness and the number of flaws, has been established using the analysis of variance. Mathematical models have also been developed for estimating the surface roughness and the number of flaws on the basis of experimental results. The optimisation of silicon carbide grinding has been carried out using genetic algorithms to obtain a maximum MRR with reference to surface finish and damage.Nomenclature C constant in mathematical model - C1 constant in surface roughness model - C2 constant in the number of flaws model - d depth of cut, m - dof degrees of freedom - f table feed rate, mm/min - M grit size (mesh) - MRR material removal rate, mm3/mm width-min - Nc number of flaws measured - Ra surface roughness measured, m - Y machining response - depth of cut exponent in mathematical model - 1 depth of cut exponent in surface roughness model - 2 depth of cut exponent in number of flaws model - feed rate exponent in mathematical model - 1 feed rate exponent in surface roughness model - 2 feed rate exponent in number of flaws model - grit size exponent in mathematical model - 1 grit size exponent in surface roughness model - 2 grit size exponent in number of flaws model  相似文献   

18.
光学自由曲面反射镜模芯的镜面成型磨削   总被引:2,自引:0,他引:2  
采用精密修锐修整的圆弧形粗金刚石砂轮在CNC精密磨床上进行了数控成型磨削加工,实现了高效镜面磨削。分析金刚石砂轮圆弧形轮廓的成型修整原理,建立了圆弧形修整的数控模式。通过建立曲面数控成型磨削的行走轨迹算法,实现了自由曲面的圆弧包络成型磨削加工。分析了磨削工艺参数和砂轮出刃形貌参数与超光滑表面形成的作用机制,进行了镜面磨削试验并检测表面微观形貌和粗糙度,分析实现镜面磨削的脆/塑性磨削转换机理。理论分析表明,降低砂轮行走速度,提高砂轮转速以及改善出刃形貌可以获得纳米级粗糙度的超光滑磨削表面。试验结果显示,先将砂轮修锐修整再控制砂轮行走速度小至15 mm/min时,表面粗糙度小于10 nm以下,且微观加工表面没有发生脆性破坏,形成镜面。加工高速钢自由曲面时,面形误差(PV值)可以达到10 μm以下,表面粗糙度Ra可以达到约16 nm。实验结果表明:利用数控技术和粗金刚石砂轮可以实现自由曲面模芯的高效镜面磨削加工,保证了高精度的光学自由曲面反射镜注塑模芯。  相似文献   

19.
This paper covers the CO2 laser cutting of stained glass using a Ferranti MF400 CNC laser cutting machine. The report examines the various laser cutting parameters required to generate a cut surface in glass which will require minimal post-treatment to be carried out, and also investigates the degree of geometrical intricacy that can be attempted, together with the associated limitations, in cutting 2D glass components. The experimental procedure used to obtain the necessary information for a preliminary database on the laser cutting of stained glass is also detailed. Finally, the implications and applications of the investigative work are examined for commercial situations through construction of a simple 2D test artefact.Notation f pulse frequency (Hz) - k thermal conductivity (W/mK) - P laser beam power (W) - Pl pulse duration (10–5 s) - Pr pulse ratio - Ps pulse separation (10–5 s) - P shield gas pressure (bar) - R a surface roughness (m) - t s substrate thickness (mm) - V cutting speed (mm/min) - V opt optimum cutting speed (mm/min) - w kcrf width (mm) - angle of deviation (deg.) - wavelength (m) - d perforation depth (mm)  相似文献   

20.
The present work deals with some machinability studies on flank wear, surface roughness, chip morphology and cutting forces in finish hard turning of AISI 4340 steel using uncoated and multilayer TiN and ZrCN coated carbide inserts at higher cutting speed range. The process has also been justified economically for its effective application in hard turning. Experimental results revealed that multilayer TiN/TiCN/Al2O3/TiN coated insert performed better than uncoated and TiN/TiCN/Al2O3/ZrCN coated carbide insert being steady growth of flank wear and surface roughness. The tool life for TiN and ZrCN coated carbide inserts was found to be approximately 19 min and 8 min at the extreme cutting conditions tested. Uncoated carbide insert used to cut hardened steel fractured prematurely. Abrasion, chipping and catastrophic failure are the principal wear mechanisms observed during machining. The turning forces (cutting force, thrust force and feed force) are observed to be lower using multilayer coated carbide insert in hard turning compared to uncoated carbide insert. From 1st and 2nd order regression model, 2nd order model explains about 98.3% and 86.3% of the variability of responses (flank wear and surface roughness) in predicting new observations compared to 1st order model and indicates the better fitting of the model with the data for multilayer TiN coated carbide insert. For ZrCN coated carbide insert, 2nd order flank wear model fits well compared to surface roughness model as observed from ANOVA study. The savings in machining costs using multilayer TiN coated insert is 93.4% compared to uncoated carbide and 40% to ZrCN coated carbide inserts respectively in hard machining taking flank wear criteria of 0.3 mm. This shows the economical feasibility of utilizing multilayer TiN coated carbide insert in finish hard turning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号