首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
不同原料合成COPNA树脂及其黏结性   总被引:3,自引:1,他引:3  
以四种不同的油浆为原料,在酸性催化剂存在下,与对苯二甲醇反应,得到四种COPNA树脂。以COPNA树脂、酚醛、环氧树脂为基体,与炭纤维复合,通过模压成型,得到四种不同基体的复合材料。考察并比较了COPNA树脂的软化点、残炭、B树脂含量等黏结性参数以及树脂/炭纤维复合材料的抗冲击强度和层间剪切强度。从大庆油浆得到的COPNA树脂为基体的炭纤维复合材料,表现出的力学性能优于酚醛、环氧树脂,间接证明了COPNA树脂与炭纤维有较强的亲和性,这为COPNA树脂的应用提供了一个很好的方向。  相似文献   

2.
以萘及萘酚为单体苯甲醛为交联剂的COPNA树脂的研究   总被引:6,自引:2,他引:4  
以萘、α-萘酚为单体,苯甲醛为交联剂,可在酸催化下合成得到未交联的缩合多核芳香烃树脂。其中以萘为单体时,反应需在浓硫酸催化在160℃以上的温度下进行;而以α-萘酚为单体时,反应可在浓硫酸、对甲苯磺酸或三氯乙酸催化下在120℃左右进行,所得未交联COPNA树脂均具备很好的流动性,而交联后的树脂均具很高的耐耐热性,以为单体的树脂在氨气中的热降解起始温度可达510℃,以α-酚为单体的树脂也可达到460℃  相似文献   

3.
铜导电胶电性能的研究   总被引:1,自引:0,他引:1  
以改性树脂和混合树脂为粘料,铜粉为导电性填料,并配以适当添加剂、固化剂制备铜导电胶。该胶具有电阻率较低,性能稳定,粘接力强等优点。  相似文献   

4.
以烯丙基苯酚(AP)、烯丙基(对、间和混合)甲酚为烯丙基化试剂,与甲氧基二苯醚反应,制备了一系列以烯丙基为活性基团的改性二苯醚树脂。用双马来酰亚胺固化改性二苯醚树脂的反应性良好,树脂固化物具有良好的力学性能和耐热性。  相似文献   

5.
以萘为单体、三聚甲醛为交联剂,可在对甲苯磺酸、浓硫酸或氯磺酸的催化下,在150~160℃下反应得到未交联的缩合多核芳香烃树脂(B-树脂)。这种B-树脂不能单靠热交联的方式转化为C-树脂,但如果在交联时添加20%~30%(质量)的交联剂,则B-树脂即可有效地进行交联,交联后树脂在氮气中的热降解起始温度在500℃左右。  相似文献   

6.
舒冬梅 《功能材料》2007,38(A09):3387-3390
以N,N-亚甲基双丙烯酰胺为交联剂,过硫酸钾为引发剂,采用溶液聚合法合成了丙烯酸。丙烯酰胺二元共聚高吸水性树脂及AMPS-AA-AM三元共聚高吸水性树脂。研究了单体组成、单体浓度、引发剂用量、交联剂用量、反应温度等因素对产物性能的影响。以自制的高分子吸水树脂(SAP)作为水泥基材料自养护外加剂,利用吸水树脂优良的保水性能,为水泥水化提供较长时间及持续、稳定的水分供应和充分的内部相对湿度,保证水化反应的顺利进行,达到自养护的目的。考察了影响吸水树脂吸水性能的因素以及掺加吸水树脂的水泥试样的强度、流动度等性能。  相似文献   

7.
高吸油性树脂的合成与性能   总被引:25,自引:0,他引:25  
以甲基丙烯酸酯为单体,双烯化合物为交联剂,采用悬浮聚合方法合成高吸油性树脂。研究了单体结构、引发剂用量、交联剂用量及共聚单体配比对树脂性能的影响,并考察了高吸油性树脂对水面浮油的回收性能。  相似文献   

8.
以三氧六环交联剂的COPNA树脂的合成与性能研究   总被引:5,自引:2,他引:3  
以三氧六环为交联剂,萘、萘酚、蒽及其混合物为单体,可在对甲苯磺酸或三氯乙酸论下,在80-160℃下反应得到未交联的缩合多核芳香烃树脂。对聚合反庆机理作了一定的研究,并提出了聚合机理,以萘酚或萘为单体的树脂的交联较为困难,而在萘中加入蒽,不但可大大提高反应速率,也可使所得树脂的交联变得容易。交联后树脂在氮气中的热降解起始温度在400℃左右。  相似文献   

9.
以三氧六环为交联剂的COPNA树脂的合成与性能研究   总被引:4,自引:0,他引:4  
以三氧六环为交联剂,萘、萘酚、蒽及其混合物为单体,可在对甲苯磺酸或三氯乙醚催化下,在80~160℃下反应得到未交联的缩合多核芳香烃树脂。对聚合反应机理作了一定的研究,并提出了聚合机理。以萘酚或萘为单体的树脂的交联较为困难,而在萘中加入蒽,不但可大大提高反应速率,也可使所得树脂的交联变得容易。交联后树脂在氮气中的热降解起始温度在400℃左右。  相似文献   

10.
以萘为单体、三聚甲醛为交联剂,可在对甲苯磺酸、浓硫酸或氯磺的催化下在150-160℃下反应和到未交联的缩合多核芳香烃树脂(B-树脂)、这种B-树脂不能单靠热交联的方式转化为C-树脂,但如果在交联时添加20-30%(质量)的的交联剂,则B-树脂即可有效地进行交联,交联后树脂氮气中的热降解起始温度在500℃左右。  相似文献   

11.
高吸水性树脂的微波辐射合成工艺及性能研究   总被引:13,自引:0,他引:13  
针对目前高吸水性树脂合成中存在的问题,采用微波加热提供反应所需热量,以淀粉为原料,过硫酸钾为引发剂,进行丙烯酸接枝共聚反应,开展了高吸水性树脂的微波辐射合成工艺及性能研究,在最佳条件下合成了吸水率为753g/g的高吸水性树脂,性能测试结果表明,该树脂具有良好的吸水和保水性能。本工艺较传统加热合成方法节省时间数10倍,操作条件易于控制,无“三废”排放,是合成高吸水性树脂的清洁生产工艺。  相似文献   

12.
耐热透明树脂ARTON近年来,随着光盘、CD光波透镜等所用的光学零件对有机树脂材料提出更高的要求,为改善过去所用的PMMA、PC等树脂材料的吸水、双折射、以及耐热性等缺点,已开发了一种新树脂,并已应用于光学元件上,该树脂就是ARTON。ARTON以降...  相似文献   

13.
高吸水性树脂的辐射接枝制备和结构表征   总被引:20,自引:1,他引:19  
以天然多羟基淀粉和预先中和的水溶性单体丙烯酸为原料,采用γ射线辐射引发接枝共聚,制备高吸水性树脂,得到了吸蒸馏水2300倍,吸0.95NaCl为140倍的高吸水性树脂,在此基础上,用红外光谱,扫描电镜等分析手段对树脂结构进行了表征。  相似文献   

14.
《新材料产业》2007,(12):85-86
日本北陆先端科学技术大学院大学开发出了耐热温度超过300℃的植物性树脂。植物性树脂目前正逐渐应用于手机、个人电脑外壳,但存在耐热性能低的课题。以聚乳酸为主要成分的一般植物性树脂的耐热温度为60℃左右。因此,在实际应用时大多会通过混合石油系树脂和矿物提高耐热性。  相似文献   

15.
新型封闭型聚氨酯树脂的制备与粘接性能   总被引:1,自引:0,他引:1  
以甲苯二异氰酸酯和聚醚多元醇为原料,以乙二醇单乙醚为封闭剂,采用无溶剂法制备了无溶剂封闭型聚氨酯树脂。研究了解封时间、解封温度和聚醚等因素对该树酯固化性能的影响,并考察了该树脂对金属的粘接性能。  相似文献   

16.
以环氧树脂为基体,以经热处理的Fe73.5Cu1Nb3Si13.5B9非晶粉体为增强材料,制备了环形树脂基复合材料,并研究了非晶粉体退火工艺、纳米晶粉体含量及复合材料退火工艺对树脂基复合材料的起始磁导率μi和Q值的影响。结果表明:以经550℃×0.5h退火的Fe73.5Cu1Nb3Si13.5B9纳米晶粉体为组元的树脂基复合材料的起始磁导率μi最大,为2.528,Q值最小,其中心频率(34.426MHz)对应的Q值为72.4;随着纳米晶粉体含量的增加,树脂基复合材料的起始磁导率μi增大,Q值减小;去应力退火可以提高树脂基磁性复合材料的起始磁导率μi。  相似文献   

17.
5405双马来酰亚胺树脂基复合材料的韧性评价EI   总被引:2,自引:0,他引:2  
研制出高韧性,耐湿热,工艺性好的基体树脂是复合材料扩大到飞机主受力构件应用的关键。5405双马来酰亚胺树脂正是基于这一目的而研制的,它以Narmeo5245C作为参比对象,在保证130℃使用和良好工艺性的前题下,以突出高韧性为目标。本文研究该树脂浇铸体及碳纤维复合材料的韧性数据,结果表明,5405树脂具有良好的韧性,其韧性数据优于5208和5245,迭层板部分性能达到NASARP1142中规定的指标。  相似文献   

18.
羧甲基纤维素与丙烯酸和丙烯酰胺共聚接枝研究   总被引:15,自引:0,他引:15  
以羧甲基纤维素钠、丙烯酸、丙烯酰胺为原料,通过自由基接聚合制备了高吸水树脂,分别考察了各种制备条件如聚合温度,反应时间,原料浓度,原料配比,引发剂浓度等因素对高吸水树脂吸收能力的影响,确定了最佳制备条件,制备的高吸水树脂吸收蒸馏水高达900倍左右。  相似文献   

19.
国外甲基丙烯酸树脂新进展   总被引:1,自引:0,他引:1  
国外甲基丙烯酸树脂新进展朱根元,牟馨(化工部成都有机硅研究中心)一、生产以甲基丙烯酸甲酯(MMA)及其树脂为代表的甲基丙烯酸树脂,九十年代以来全球产能明显增加。其单体MMA的总生产能力,1988年为149万吨/年 ̄[1],1992年184万吨/年 ̄[...  相似文献   

20.
高吸油树脂缓释动力学研究   总被引:15,自引:0,他引:15  
以丙烯酸系高吸油树脂缓释过程为研究对象,以α-甲基丙烯酸十二酯为主单体,研究了引发剂,交联剂用量及溶剂溶度参数对树脂缓释行为的影响,提出描述高吸油树脂作为缓释材料基材的缓释速率方程:t^1/2/Q=A kt,发现交联密度和溶剂溶度参数是更为根本的影响因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号