首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
采用固溶双细化处理对Cr12MoV钢进行预备热处理,而后分别进行真空热处理和普通热处理,对其硬度、冲击韧度、抗弯强度、耐磨性进行测定,并观察其显微组织和断口形貌。结果表明:由于组织中碳化物以粒状均匀地分布于基体中,Cr12MoV钢经真空热处理后,材料的冲击韧度、抗弯强度、耐磨性均高于普通热处理。其冲击韧度、抗弯强度分别达到8.347 J.cm-2和1732.6 MPa,相对于普通热处理,分别提高57.6%和16.9%。  相似文献   

2.
分别采用球化退火和调质处理作为Cr12MoV钢的预备热处理,而后对钢进行相同的真空热处理,并对其显微组织、硬度、冲击韧度、抗弯强度和耐磨性进行观察与测定。结果表明:由于调质处理使得组织中碳化物的形态、大小及分布得到改善,采用调质处理为预备热处理的试样经最终热处理后,其硬度、冲击韧度、抗弯强度和耐磨性均高于采用球化退火为预备热处理的试样;其冲击韧度、抗弯强度分别达到8.652 J.cm-2和2201.4 MPa,相对于球化退火试样,分别提高了13.5%和39.3%。  相似文献   

3.
9SiCr钢制零件经真空热处理和电炉热处理后,分别对其表面质量、变形量、金相组织、冲击韧度、断口形貌和耐磨性能进行了测定.结果表明:9SiCr钢制零件在真空热处理后零件表面无氧化、脱碳现象;零件变形量更小、硬度更高;耐磨性能、冲击韧度明显提高.真空热处理后随炉试样的回火马氏体更细小,碳化物颗粒分布也更均匀.从断口形貌可看出真空热处理后随炉试样的韧窝更多,零件的冲击韧度明显更好.  相似文献   

4.
深冷处理对Cr12MoV冲模尺寸及性能的影响   总被引:7,自引:4,他引:3  
研究了Cr12MoV钢冲模经不同工艺处理后的尺寸、冲击韧度、磨损速率。结果表明,冲模热处理后的尺寸与残余奥氏体的量有关,深冷处理可控制其尺寸,井可提高Cr12MoV钢的冲击韧度、耐磨性能。深冷处理后,Cr12MoV钢冲击断口韧窝明显细化。  相似文献   

5.
本文研究了NSR55钢经不同工艺处理后的冲击韧度和耐磨性,并对冲击断口和磨痕进行了分析。结果表明,常规热处理后再进行深冷处理可显著地提高NSR55钢的冲击韧度和耐磨性,并且经过深冷处理后的冲击断口的韧窝尺寸也明显减小,粘着磨损也较轻。  相似文献   

6.
对经不同深冷处理后的Cr12钢进行力学性能检测和摩擦磨损试验。结果表明:深冷处理可不同程度地提高Cr12钢的硬度;980℃淬火+深冷处理+180℃×8h回火处理后,Cr12钢的冲击韧度有所降低;深冷处理可明显提高Cr12钢的耐磨性并降低钢中残留奥氏体含量,其中深冷处理6h后耐磨性提高最为显著,其相对磨损率下降了45.1%,残留奥氏体含量降幅达到84.2%。  相似文献   

7.
对Cr12MoV失效模具进行组织、性能分析,并对其重新进行热处理,研究预备热处理工艺对模具组织、性能的影响。结果表明:采用调质处理代替球化退火作为Cr12MoV钢的预备热处理,更有利于碳化物形态的改变,对提高模具强韧性有比较明显的效果;调质处理后,材料的冲击韧度、抗弯强度分别达到8.556 J.cm-2和2183.5 MPa,相对于球化退火试样,分别提高了13.7%和66.2%。  相似文献   

8.
赵国华 《热处理》2010,25(6):59-62
对经不同工艺深冷处理后的Cr12MoV钢进行了显微组织观察和力学性能检测。试验结果表明,深冷处理可以不同程度地提高Cr12MoV钢的硬度;淬火后进行深冷处理+180℃×8 h回火后没有改善Cr12MoV钢的冲击韧度;深冷处理可明显提高Cr12MoV钢的耐磨性,其中深冷处理6 h的耐磨性提高最为显著,其磨损失重下降了51.2%。  相似文献   

9.
赵国华 《热处理》2009,24(5):68-70
研究了经不同工艺深冷处理的Cr12钢的显微组织和力学性能。结果表明,深冷处理可以在一定程度上提高Cr12钢的硬度,明显提高其耐磨性,其中深冷处理6h后钢的磨损失重下降了45%。但淬火后进行深冷处理,再于180℃回火8h的Cr12钢的冲击韧度未能得到明显改善。  相似文献   

10.
Cr12钢经980℃奥氏体化后,于280℃硝盐中等温不同时间获得不同比例的马氏体一贝氏体复合组织,测定了其力学性能.并与常规淬火回火后的力学性能进行了比较。结果表明:具有马氏体-贝氏体复合组织Cr12钢与常规淬火回火的回火马氏体组织相比,除硬度有所降低外,抗弯强度、挠度、冲击韧度及耐磨性均有较大幅度的提高。经980℃加热、280℃等温5h、180℃回火后,Cr12钢具有最佳的综合力学性能。  相似文献   

11.
提高凸模寿命的途径   总被引:1,自引:0,他引:1  
一般电机硅钢片冲裁用凸模采用Cr12钢制造,热处理工艺是淬火 低温回火。由于Cr12属莱氏体钢,共晶碳化物虽经锻碎。但仍粗大且有棱角.致使凸模强韧性不足,寿命不高:改用9SiCr钢并采用刃口双液淬火、整体等温淬火热处理.使碳化物均匀圆整.提高了刃口硬度、耐磨性和凸模整体的强韧性,使用寿命显著提高。  相似文献   

12.
余际星  赵玉明  华林  余世浩 《热处理》2005,20(4):29-30,43
冷摆碾工艺要求模具材料的性能特殊。针对轿车行星齿轮摆碾模具,比较了Cr12MOV钢与7Cr7M02V2Si(LD)钢两种模具材料的应用效果。结果表明,在强韧性、抗疲劳性能要求高时,LD钢优于Cr12MoV钢,其使用寿命比后者高1—3倍。还介绍了两种模具钢的真空热处理规范。  相似文献   

13.
对大口径厚壁管 12Cr1MoVG进行多次模拟焊后热处理,并使用力学性能检测设备、光学显微镜、扫描电子显微镜对样品进行分析,旨在研究多次热处理对钢管性能均匀性及组织稳定性的影响。结果表明:经 3次回火热处理之后,强度、硬度稍有下降,冲击韧性指标稳定,金相组织稳定性较好,即只要过程控制得当,经多次热处理之后大口径厚壁管 12Cr1MoVG性能均匀性及组织稳定性仍较好;强度与球化级别的关系并不完全符合 DL/T773标准。该试验弥补了现场热处理未能破坏取样的不足,为锅炉管道对口安装及返修热处理的评估提供重要的数据支撑。  相似文献   

14.
本文研究了四种不同的热处理工艺,即正常淬火加回火、等温淬火加回火,变温淬火加回火和双等揾淬火加回火对W18Cr4V钢的组织和性能的影响。结果表明,W18Cr4V钢经变温淬火和双等温淬火处理的冲击韧性a_k值、小能量多冲抗力、抗弯强度和耐磨性都比正常淬火的高。据此W18Cr4V钢采用变温淬火或双等温淬火工艺处理后其强韧性配合较好,用来制作冷作模具,可使寿命提高。  相似文献   

15.
用深冷处理消除Cr12MoV钢冲模热处理变形   总被引:4,自引:0,他引:4  
研究了Cr12MoV钢冲模经不同工艺处理后的尺寸,冲击韧度和磨损速率,结果表明,Cr12MoV钢冲模热处理后的尺寸与残留奥氏体的量有关,深冷处理可控制Cr12MoV钢的尺寸,产可以提高Cr12MoV钢的冲击韧度,耐磨性能。深冷处理后,Cr12MoV钢冲击断口韧窝明显细化。  相似文献   

16.
通过常规力学性能测试设备、光学显微镜研究了不同热处理工艺对12Cr1MoV钢性能和组织的影响。结果表明:随着正火温度提高,12Cr1MoV钢的抗拉强度和屈服强度变化不大,而冲击韧性有较大增加;随着回火温度提高,经910℃和930℃两种正火温度处理,12Cr1MoV钢的强度和韧性变化不大。12Cr1MoV钢在热轧态、正火态及正火+回火态的组织均为铁素体+珠光体,经910℃正火+680℃回火处理后,钢中的铁素体晶粒度比930℃正火+680℃回火处理后更细小且分布更均匀,性能与前者基本相同。因此,可以选取910℃正火+680℃回火作为12Cr1MoV钢的热处理工艺,从而降低钢板生产的成本。  相似文献   

17.
通过显微组织分析、室温拉伸试验、冲击试验、硬度试验,研究不同回火制度下1Cr12Ni3MoVN钢的显微组织与力学性能。结果表明,随着回火温度的增加,1Cr12Ni3MoVN钢析出相数量不断增加,对材料的强度、冲击性能具有增强效果;碳化物聚集长大,基体组织逐渐由马氏体向回火索氏体转变,杂质元素在晶界处偏聚而降低了材料的断裂抗性,冲击韧性降低,回火温度应取较低温度;随565 ℃回火时间的延长,1Cr12Ni3MoVN钢抗拉强度、屈服强度、硬度下降,塑性变化不大,冲击吸收能量略有增加,回火保温时间不宜过长;随回火冷却速度的降低,1Cr12Ni3MoVN钢强度先升后降,塑性变化不大,冲击吸收能量显著下降,硬度变化不大,建议以空冷方式进行回火冷却。最佳的回火热处理工艺为565 ℃保温2 h,空冷。  相似文献   

18.
通过显微组织观察及性能测定,对轴承用8Cr4Mo4V钢真空气淬及等温盐浴淬火处理后的性能进行了对比分析。结果表明,8Cr4Mo4V钢真空气淬后得到马氏体组织,等温盐浴淬火后得到马氏体+贝氏体混合组织。真空气淬后钢的晶界有碳化物析出,腐蚀后晶界特征明显,而等温盐浴淬火后晶界碳化物析出量少,钢的晶界特征不明显。再经回火处理后,钢中析出大量碳化物,与真空气淬相比,等温盐浴淬火钢中析出的碳化物在尺寸和数量上都更大。钢的硬度和耐磨性测试表明,等温盐浴淬火钢的硬度为61.78 HRC,而真空气淬钢的硬度为60.28 HRC,硬度提高了1.5 HRC,等温盐浴淬火钢的摩擦磨损性能比真空气淬钢高。与真空气淬相比,等温盐浴淬火处理后钢的力学性能提升,室温拉伸强度提高了164 MPa,高温拉伸强度提高了50 MPa,冲击吸收能量提高了46.9%,旋转弯曲疲劳强度极限由860 MPa提高至1050 MPa,提高了22%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号