首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
T-cell antigen receptor (TCR) engagement results in sequential activation of the Src protein tyrosine kinases (PTKs) Lck and Fyn and the Syk PTKs, ZAP-70 and Syk. While the Src PTKs mediate the phosphorylation of TCR-associated signaling subunits and the phosphorylation and activation of the Syk PTKs, the lack of a constitutively active Syk PTK has prohibited the analysis of Lck function downstream of these initiating signaling events. We describe here the generation of an activated Syk family PTK by substituting the kinase domain of Syk for the homologous region in ZAP-70 (designated as KS for kinase swap). Expression of the KS chimera resulted in its autophosphorylation, the phosphorylation of cellular proteins, the upregulation of T-cell activation markers, and the induction of interleukin-2 gene synthesis in a TCR-independent fashion. The KS chimera and downstream ZAP-70 or Syk substrates, such as SLP-76, were still phosphorylated when expressed in Lck-deficient JCaM1.6 T cells. However, expression of the KS chimera in JCaM1.6 cells failed to rescue downstream signaling events, demonstrating a functional role for Lck beyond the activation of the ZAP-70 and Syk PTKs. These results indicate that downstream TCR signaling pathways may be differentially regulated by ZAP-70 and Lck PTKs and provide a mechanism by which effector functions may be selectively activated in response to TCR stimulation.  相似文献   

2.
We show that T cell activation of human CD4+ cloned T cells through the CD2 molecule can induce either autocrine proliferation or cytolysis, depending on the pair of anti-CD2 mAbs used for stimulation, that is, D66/T11(1) or GT2/T11(1), respectively. As the earliest biochemical event after CD2 stimulation is likely the induction of tyrosine phosphorylation of various proteins, we investigated whether differential activation of protein tyrosine kinases (PTKs) could contribute to the selective induction of each function. Results show that herbimycin A, a potent PTK inhibitor, markedly decreased the induction of both proliferation and cytolysis. This implies a regulatory role for tyrosine phosphorylation in the induction of each function by CD2. However, that PTKs are differentially activated upon induction of proliferation by D66/T11(1) or cytotoxic function by GT2/T11(1) emanated from two different approaches. First, immunoblotting total cellular extracts with an anti-phosphotyrosine mAb showed different patterns of tyrosine phosphorylation depending on the pair of CD2 mAbs used for stimulation. Second, a differential activation of p56lck, a src-related PTK, was observed after stimulation with D66/T11, and GT2/T11(1). Although induction of proliferation by D66/T11(1) was correlated with increased Lck activity, this was not observed when cells were triggered to lyse by GT2/T11(1). Thus, by providing striking correlative evidences linking differences in PTK activation with induction of different functions in bifunctional cloned T cells, our results strongly suggest that PTKs may contribute to the selective orientation of T cell functions at a single-cell level.  相似文献   

3.
Cross-linking of the T cell antigen receptor (TCR)-CD3 complex induces rapid tyrosine phosphorylation and activation of Src (Lck and Fyn) and Syk (Syk and Zap-70) family protein tyrosine kinases (PTKs) which, in turn, phosphorylate multiple intracellular substrates. Cbl is a prominent PTK substrate suggesting a pivotal role for it in early signal transduction events. However, the regulation of Cbl function and tyrosine phosphorylation in T cells by upstream PTKs remains poorly understood. In the present study, we used genetic and biochemical approaches to demonstrate that Cbl directly interacts with Syk and Fyn via its N-terminal and C-terminal regions, respectively. Tyr-316 of Syk was required for the interaction with Cbl as well as for the maximal tyrosine phosphorylation of Cbl. However, both wild-type Syk and Y316F-mutated Syk phosphorylated equally well the C-terminal fragment of Cbl in vivo, suggesting the existence of an alternative, N terminus-independent mechanism for the Syk-induced tyrosine phosphorylation of Cbl. This mechanism appears to involve Fyn, since, in addition to its association with the C-terminal region of Cbl, Fyn also associated with Syk and enhanced the Syk-induced tyrosine phosphorylation of Cbl. These findings implicate Fyn as an adaptor protein that facilitates the interaction between Syk and Cbl, and suggest that Src and Syk family PTKs coordinately regulate the tyrosine phosphorylation of Cbl.  相似文献   

4.
Tyrosine phosphorylation of linker proteins enables the T cell antigen receptor (TCR)-associated protein tyrosine kinases to phosphorylate and regulate effector molecules that generate second messengers. We demonstrate here that the SLP-76 linker protein interacts with both nck, an adaptor protein, and Vav, a guanine nucleotide exchange factor for Rho-family GTPases. The assembly of this tri-molecular complex permits the activated Rho-family GTPases to regulate target effectors that interact through nck. In turn, assembly of this complex mediates the enzymatic activation of the p21-activated protein kinase 1 and facilitates actin polymerization. Hence, phosphorylation of linker proteins not only bridges the TCR-associated PTK, ZAP-70, with downstream effector proteins, but also provides a scaffold to integrate distinct signaling complexes to regulate T cell function.  相似文献   

5.
SLP-76 (SH2 domain leukocyte protein of 76 kDa) is a recently identified substrate of the TCR-stimulated protein tyrosine kinases that functions in the signal transduction cascade linking the TCR with IL-2 gene expression. In this report, we demonstrate that engagement of the TCR results in tyrosine phosphorylation of SLP-76 in its amino-terminal acidic region. Two tyrosines (Y113 and Y128) fall within an identical five amino-acid motif and are shown to be phosphorylated upon TCR ligation. Although mutation of either Y113 and Y128 has a minimal effect on SLP-76 function, mutation of both residues decreases significantly the ability of SLP-76 to promote T cell activation. A third tyrosine within the amino-terminal region (Y145) appears to be the most important for optimal SLP-76 function, as altering it alone to phenylalanine has a potent impact on SLP-76 augmentation of NFAT promoter activity.  相似文献   

6.
Activation of immune system cells via antigen-, Fc-, or natural killer cell-triggering-receptor stimulation is aborted by co-engagement of inhibitory receptors. Negative signaling by killer cell inhibitory receptors and related receptors depends on the Src homology 2 (SH2)-containing protein tyrosine phosphatase SHP-1. Using a combination of direct binding and functional assays, we demonstrated that the SH2 domain-containing leukocyte protein 76 (SLP-76) is a specific target for dephosphorylation by SHP-1 in T cells and natural killer cells. Furthermore, we showed that tyrosine-phosphorylated SLP-76 is required for optimal activation of cytotoxic lymphocytes, suggesting that the targeted dephosphorylation of SLP-76 by SHP-1 is an important mechanism for the negative regulation of immune cell activation by inhibitory receptors.  相似文献   

7.
8.
The leukocyte-specific adapter molecule SLP-76 (Src homology 2 domain-containing leukocyte protein of 76 kilodaltons) is rapidly phosphorylated on tyrosine residues after receptor ligation in several hematopoietically derived cell types. Mice made deficient for SLP-76 expression contained no peripheral T cells as a result of an early block in thymopoiesis. Macrophage and natural killer cell compartments were intact in SLP-76-deficient mice, despite SLP-76 expression in these lineages in wild-type mice. Thus, the SLP-76 adapter protein is required for normal thymocyte development and plays a crucial role in translating signals mediated by pre-T cell receptors into distal biochemical events.  相似文献   

9.
The binding of antigen to the B cell antigen receptor (BCR) results in the activation of protein tyrosine kinases (PTKs) such as Lyn and Syk, and the phosphorylation of several substrate proteins including HS1 and SLP-65. How these signaling elements are connected to the BCR is not well understood. Using an expression vector for a tamoxifen-regulated Cre recombinase, we have developed a method that allows the inducible expression of the BCR. Disruption of the VH leader reading frame of the immunoglobulin heavy chain by two loxP sites is overcome by Cre-mediated DNA recombination and results in the cell surface expression of the BCR starting 4 h after exposure of transfected B cells to tamoxifen. This method can, in principle, be employed for the inducible expression of any secreted or type I transmembrane protein. By monitoring the activation of signaling elements in pervanadate-stimulated B cells expressing different levels of the BCR, we show here that phosphorylation of SLP-65 and Syk, but not of Lyn, is strictly dependent on the expression of the BCR on the cell surface. These data suggest that the BCR reorganizes its signaling molecules as soon as it appears on the cell surface.  相似文献   

10.
The YTA-1 anti-LFA-1 alpha mAb activates protein tyrosine kinase (PTK), augments NK cytotoxicity, and induces proliferation of fresh CD3- large granular lymphocytes. We demonstrate here that LFA-1 is physically associated in the YT human NK-like cell line cells with a PTK(s) that is distinct from Src family PTKs such as Lck, Fyn, or Lyn. In vitro kinase assays revealed similar association of protein kinase activity with LFA-1 in normal CD3- large granular lymphocytes. Tyrosine phosphorylation of the proteins associated with LFA-1 drastically increased in YT cells after stimulation with NK-sensitive K562 cells but not with NK-resistant P815 cells. Furthermore, pretreatment of YT cells with TS1/22 anti-LFA-1 alpha and TS1/18 anti-LFA-1 beta mAbs abrogated not only the cytotoxicity against K562 cells but also an increase in tyrosine phosphorylation of LFA-1-associated molecules induced by K562 stimulation. These results provide biochemical evidence that the PTK(s) associated with LFA-1 is involved in the signal transduction that follows the recognition of NK target cells.  相似文献   

11.
Many cytokines transmit signals to the cell interior through activation of receptor-associated, Janus family protein tyrosine kinases (Jak PTKs). The interleukin-2 receptor (IL-2R) is associated with the Jak1 and Jak3 PTKs, and ligand-induced activation of these PTKs is essential for lymphocyte proliferation. Here, the nonreceptor PTK, Pyk2, was found to be activated following IL-2 stimulation in a Jak-dependent manner. Furthermore, physical association was detected between endogenous Pyk2 and Jak3, and a dominant interfering mutant of Pyk2 inhibited IL-2-induced cell proliferation without affecting Stat5 activation. Collectively, these results suggest that Pyk2 is a newly identified component of the Jak-mediated IL-2 signaling pathway.  相似文献   

12.
The surface immunoglobulin M (sIgM)-associated src family protein tyrosine kinases (PTKs) p55blk, p59fyn, and p53/56lyn become activated in B cells within seconds following sIgM cross-linking. Studies using protein tyrosine kinase (PTK) inhibitors have demonstrated that PTK activity is crucial for downstream events such as calcium flux, inositol phospholipid hydrolysis, and cell cycle entry. The roles that the individual src family PTKs play in sIgM signaling are largely unknown, however. In order to determine whether p59fyn plays a distinct role in sIgM signal transduction, the signaling capabilities of B cells isolated from fyn "knockout" mice were evaluated. We observed that in the absence of p59fyn, there was no demonstrable compromise of the sIgM-coupled signaling events measured (tyrosine phosphorylation, inositol phospholipid hydrolysis, and Ca2+ flux). We propose that either p59fyn is not involved in coupling sIgM to these specific signaling pathways or that other PTKs are able to compensate for the absence of p59fyn, indicating redundancy in the sIgM signaling pathways.  相似文献   

13.
Tyrosine phosphorylation of cellular proteins mediates the assembly and localization of effector proteins through interactions facilitated by modular Src homology 2 (SH2) and phosphotyrosine binding domains. We describe here two tyrosine-phosphorylated proteins with Mr values of 70,000 and 68,000 that interact with Grb2, phospholipase C (PLCgamma1 and PLCgamma2), and Vav after B cell receptor cross-linking. The interaction of pp70 and pp68 with PLC and Vav is mediated by the carboxyl-terminal SH2 domain of PLC and the SH2 domain of Vav. In contrast, the interaction of pp70 and pp68 with Grb2 requires cooperative binding of the SH2 and SH3 domains of Grb2. Western blot analysis demonstrated that neither pp70 nor pp68 represented the recently described linker protein SLP-76, which binds Grb2, PLC, and Vav in T cells after T cell receptor activation. Moreover, SLP-76 protein was not detected in a number of B cell lines or in normal mouse B cells. Hence, we propose that pp70 and pp68 likely represent B cell homologs of SLP-76 which facilitate and coordinate B cell activation.  相似文献   

14.
Stromal cell-derived factor-1 (SDF-1), a C-X-C family chemokine, is a potent T lymphocyte chemoattractant. We investigated the effects of T cell activation on the chemotactic response to SDF-1. Anti-CD3 Ab stimulation of either Jurkat T cells or murine peripheral CD4+ T lymphocytes produced a dramatic inhibition of SDF-1-induced chemotaxis. In contrast, the SDF-1 responses of Jurkat clones with deficiencies in key TCR signaling components (Lck, CD45, and TCR-beta), were only marginally reduced by anti-CD3 stimulation. Similar to PMA treatment, which abolished both CXCR4 receptor expression and the chemotactic response of Jurkat cells to SDF-1, anti-CD3 Ab treatment reduced cell surface expression of CXCR4 to 65% of the control value, an effect that was blocked by protein kinase C inhibitors. Our data suggest that initial T cell activation events inhibit the response of Jurkat T cells to CXCR4 stimulation. In contrast, SDF-1 treatment resulted in a reduction of tyrosine phosphorylation of the TCR downstream effectors, ZAP-70, SLP-76, and LAT (linker for activation of T cells), suggesting that this chemokine potentially regulates the threshold for T cell activation.  相似文献   

15.
16.
We have recently observed an abnormal pattern of protein tyrosine phosphoryl-ation in resting T lymphocytes obtained from peripheral blood of patients with systemic lupus erythematosus (SLE). To examine whether these findings may be related to dysregulated protein tyrosine kinase (PTK) function, we tested the relative amount and enzyme activity of the main PTKs involved in the earliest signalling steps triggered via the CD3 pathway. Cell lysates from peripheral blood T cells in SLE patients showed lower amounts of p59(fyn) and p56(lck) as shown by immunoblot. In contrast, the amount of ZAP-70, a PTK of the syk family, was comparable in both groups. However, p59(fyn) immuno-precipitates obtained from unstimulated peripheral blood SLE T cells showed enhanced PTK activity as compared to controls, whereas the PTK activity of p56(lck) and ZAP-70 molecules was comparable in both groups. The unchecked activity of the TCR/CD3-associated src kinase p59(fyn) may alter the balance needed for regulated T cell responses in SLE patients.  相似文献   

17.
18.
19.
Protein tyrosine phosphorylation accompanies the integrin-mediated cell to substratum adhesion, and is essential for the progression of G1/S phase of the cell-cycle in normal fibroblasts. To examine how cellular protein tyrosine phosphatase (PTPase) activity is involved in regulating the adhesion-dependent protein tyrosine phosphorylation, we employed fibroblast cells bearing an active form of a protein tyrosine kinase (PTK), v-Src. We found that the v-Src induced tyrosine phosphorylation in certain proteins such as tensin, talin, p120, p80/85 (cortactin) and paxillin was greatly reduced when the cell to substratum adhesion was lost. Readhesion of the cells onto fibronectin restored these phosphorylation events, while this was inhibited by the addition of RGD peptide. The kinase activity of the v-Src was unchanged by the loss of cell to substratum adhesion. On the other hand, treatment with a protein tyrosine phosphatase inhibitor vanadate caused much the same increase in the v-Src-mediated cellular tyrosine phosphorylation between cells adhered to the culture environments and cells kept in suspension. These data suggest that PTPase(s) appears to be more critical than the v-Src PTK in determining the cell adhesion-dependent protein tyrosine phosphorylation. Moreover, most of the protein tyrosine phosphorylations that are mediated by the v-Src but still dependent on the cell adhesion were indeed greatly reduced during an anchorage-independent growth of v-Src cells. Thus our data collectively indicate that the v-Src induced high level of tyrosine phosphorylation in certain types of proteins are still under the control of the integrin(s) or the cell adhesion to culture substratum, and most of these adhesion-regulated high levels of tyrosine phosphorylations are not essential for the transformed phenotype.  相似文献   

20.
Fibronectin receptor integrin-mediated cell adhesion triggers intracellular signaling events such as the activation of the Ras/mitogen-activated protein (MAP) kinase cascade. In this study, we show that the nonreceptor protein-tyrosine kinases (PTKs) c-Src and focal adhesion kinase (FAK) can be independently activated after fibronectin (FN) stimulation and that their combined activity promotes signaling to extracellular signal-regulated kinase 2 (ERK2)/MAP kinase through multiple pathways upstream of Ras. FN stimulation of NIH 3T3 fibroblasts promotes c-Src and FAK association in the Triton-insoluble cell fraction, and the time course of FN-stimulated ERK2 activation paralleled that of Grb2 binding to FAK at Tyr-925 and Grb2 binding to Shc. Cytochalasin D treatment of fibroblasts inhibited FN-induced FAK in vitro kinase activity and signaling to ERK2, but it only partially inhibited c-Src activation. Treatment of fibroblasts with protein kinase C inhibitors or with the PTK inhibitor herbimycin A or PP1 resulted in reduced Src PTK activity, no Grb2 binding to FAK, and lowered levels of ERK2 activation. FN-stimulated FAK PTK activity was not significantly affected by herbimycin A treatment and, under these conditions, FAK autophosphorylation promoted Shc binding to FAK. In vitro, FAK directly phosphorylated Shc Tyr-317 to promote Grb2 binding, and in vivo Grb2 binding to Shc was observed in herbimycin A-treated fibroblasts after FN stimulation. Interestingly, c-Src in vitro phosphorylation of Shc promoted Grb2 binding to both wild-type and Phe-317 Shc. In vivo, Phe-317 Shc was tyrosine phosphorylated after FN stimulation of human 293T cells and its expression did not inhibit signaling to ERK2. Surprisingly, expression of Phe-925 FAK with Phe-317 Shc also did not block signaling to ERK2, whereas FN-stimulated signaling to ERK2 was inhibited by coexpression of an SH3 domain-inactivated mutant of Grb2. Our studies show that FN receptor integrin signaling upstream of Ras and ERK2 does not follow a linear pathway but that, instead, multiple Grb2-mediated interactions with Shc, FAK, and perhaps other yet-to-be-determined phosphorylated targets represent parallel signaling pathways that cooperate to promote maximal ERK2 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号