共查询到18条相似文献,搜索用时 46 毫秒
1.
基于特征的自动图像配准算法 总被引:4,自引:0,他引:4
提出了一种基于特征的自动图像配准算法,它利用角点检测和相关运算在给定源图像和目标图像上自动寻找侯选匹配点,利用松驰过程确定对应特征点。算法在大多数情况下能自动完成。从实验结果看,该算法获得了理想的拼合效果。 相似文献
2.
3.
合成孔径雷达(SAR)图像的自动配准长期以来都未能很好的解决,特别是高分辨率SAR图像其配准的关键是稳健的特征提取与特征匹配算法。在光学图像配准中,最常用的特征点提取算法是Harris算子,而近年来SIFT(尺度不变特性变换)算法也因其优越的性能成为当前比较流行的算法。探讨了Harris和SIFT特征提取算法在高分辨SAR图像自动配准中的应用,并选取4对有代表性的SAR图像进行了配准实验,对2种特征提取算法的运行时间、所提取匹配点对的正确率以及特征点的提取精度进行了比较。通过定性及定量分析,在同轨获取的高分辨率SAR图像配准中,SIFT均能实现精确配准,其适用性及精度均优于Harris。 相似文献
4.
传统的Harris角点检测选用全局的阈值并且不具有尺度不变性,对于较大的图像会导致检测的角点分布不均、错检等问题,为此提出一种新的基于多尺度的Harris角点检测的图像配准方法。首先将图像分块,并对其进行相应排序,根据局部阈值来提取Harris角点,然后根据图像特征点的最邻近和次邻近距离之比来确定初始匹配,最后利用特征点附近的灰度信息来实现进一步的配准。实验证明此方法使得图像配准精度和配准效率得到了极大地提高。 相似文献
5.
6.
7.
图像配准是图像处理工作(图像融合、图像镶嵌等)的核心技术。本文提出了一种有效的遥感图像自动配准算法,该算法采用改进的Harris 算子提取角点特征,利用待配准图像之间的灰度相关性进行粗匹配,然后运用虚拟三角形对全等的准则进行精匹配得到最终的匹配角点,最后通过这些角点求得刚体变换模型参数。实验结果表明:该算法是正确和有效的。 相似文献
8.
基于快速实现两幅图像的精确配准,首先使用FAST算法检测得到图像特征点,通过非极大值抑制去掉多余特征点后,得到合适的特征点;引入SIFT特征描述子对特征点进行描述,去除大部分的离散点;通过计算特征点之间的欧式距离来实现图像特征粗配准;利用渐进一致采样算法进行图像精配准.通过实验证明了图像配准结果正确,准确率高,验证了算... 相似文献
9.
针对传统尺度不变特征变换(SIFT)算法在特征提取与描述时计算量大、实时性差的问题,提出一种基于区域分块的SIFT的快速配准方法.首先,将匹配图像和待匹配图像分割成若干均匀的子图,通过计算每个子图的信息熵值与设定阈值比较来确定局部子图的特征类型;对筛选出来的特征区域的子图进行特征提取和生成PCA-SIFT描述子,对筛选出来的平坦区域直接跳过,不进行检测.实验结果表明:提出的方法在保证配准精度90%以上的情况下,计算时间减少了15%~25%左右,提高了图像配准的速度. 相似文献
10.
SIFT算法在仿射变换、噪声、一定程度的光照条件下具有良好的匹配性能,星上宽波段相机成像尺寸都非常大,超大尺寸图像直接利用SIFT算法,在构建高斯金字塔时空间占用大,同时导致计算用时长。通过研究仿射变换矩阵,提出可以通过计算超大尺寸图像的降采样图像之间的配准系数间接获取超大尺寸图像的配准系数的方法。经过实验验证,具有一定的可行性,对于图像配准从空间上减少计算量从而节约计算时间具有一定指导意义。 相似文献
11.
12.
针对Hausdorff距离的特性及其在图像匹配中的应用,提出了一种基于改进Hausdorff距离准则的快速图像匹配算法。首先对图像进行小波分解和Harris角点检测后得到图像的特征点金字塔,然后利用改进的Hausdorff距离作为度量准则从特征点序列图像的最大尺度开始逐级向低尺度进行匹配。实验结果证明,该方法能在保证匹配精度的同时,有效加快匹配速度。 相似文献
13.
针对传统图像拼接方法的不足, 提出一种基于改进SIFT算法的图像拼接方法, 并将其应用于无人机遥感图像拼接算法中。首先, 采用Harris算子角点检测遥感图像的特征点, 然后用改进的SIFT算法进行特征点的描述, 通过对高维数据进行降维处理, 减小运算量; 匹配完成后, 采用随机抽样一致性(RANSAC)算法消除误匹配; 最后采用渐入渐出加权平均融合法进行图像融合。实验结果表明: 采用所提出算法能有效剔除遥感图像之间的误匹配, 减小时间复杂度, 更好地消除拼接缝隙。 相似文献
14.
针对传统图像拼接方法的不足,提出一种基于改进SIFT算法的图像拼接方法,并将其应用于无人机遥感图像拼接算法中。首先,采用Harris算子角点检测遥感图像的特征点,然后用改进的SIFT算法进行特征点的描述,通过对高维数据进行降维处理,减小运算量;匹配完成后,采用随机抽样一致性(RANSAC)算法消除误匹配;最后采用渐入渐出加权平均融合法进行图像融合。实验结果表明:采用所提出算法能有效剔除遥感图像之间的误匹配,减小时间复杂度,更好地消除拼接缝隙。 相似文献
15.
16.
17.
在研究红外图像成像原理与特征、传统红外图像配准方法的基础上,提出了一种改进的联合点特征与灰度特征的红外图像配准算法。首先采用经典的Harris角点检测算法提取一次角点,在一次角点的基础上对其进行下降排序,对排序结果进行不同份数的等分并提取每一部分的中间值,最后根据图像配准需求有效利用中值选择不同的特征点;该算法充分利用环形区域的旋转不变性和特征点区域灰度差异性很小的原则进行特征点匹配。实验结果表明该算法能够提取出更加精确的匹配点,能够有效的完成红外图像配准。 相似文献
18.
针对基于SIFT算子的商标图像搜索方法提取特征点耗时过长的问题,提出了一种Harris和SIFT算子相结合的商标图像搜索方法,利用角点计算量小、用时少且特征点分布均匀的优点,能够反映图像内容的结构,具有较好的稳定性。实验结果表明,与基于SIFT和基于Harris特征的商标检索方法相比,该方法既保留了Harris方法提取特征点的高效性,也解决了SIFT方法对特征点提取时间过长的问题,具有实时性。 相似文献