首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of cell temperature on the performance of a polymer electrolyte fuel cell was examined in the present study. Measurements using the current interrupt and AC impedance methods showed that membrane resistance increased as the cell temperature was reduced. The charge transfer resistance, determined by the AC impedance method, also increased with decreasing cell temperature. The results of electrochemical analysis showed that the temperature of the cell strongly affected the performance of the membrane–electrode assembly in the cell. In addition, the water balance calculated from dew points of fuel gases changed with cell temperature. At a cell temperature of 80 °C, ca. 80% of the water generated on the cathode passed through the membrane to the anode, while at a cell temperature of 40 °C, only ca. 20% of the water on the cathode passed through the membrane to the anode.  相似文献   

2.
In this work, a novel self-humidifying membrane electrode assembly (MEA) with Pt/SiO2/C as anode catalyst was developed to improve the performance of proton exchange membrane fuel cell (PEMFC) operating at low humidity conditions. The characteristics of the composite catalysts were investigated by XRD, TEM and water uptake measurement. The optimal performance of the MEA was obtained with the 10 wt.% of silica in the composite catalyst by single cell tests under both high and low humidity conditions. The low humidity performance of the novel self-humidifying MEA was evaluated in a H2/air PEMFC at ambient pressure under different relative humidity (RH) and cell temperature conditions. The results show that the MEA performance was hardly changed even if the RHs of both the anode and cathode decreased from 100% to 28%. However, the low humidity performance of the MEA was quite susceptible to the cell temperature, which decreased steeply as the cell temperature increased. At a cell temperature of 50 °C, the MEA shows good stability for low humidity operating: the current density remained at 0.65 A cm−2 at a usual work voltage of 0.6 V without any degradation after 120 h operation under 28% RH for both the anode and cathode.  相似文献   

3.
尧磊  彭杰  张剑波  张扬军 《化工进展》2019,38(9):4029-4035
冷启动是质子交换膜燃料电池(PEMFC)商业化所面临的挑战之一,在PEMFC冷启动实验中,通过中子成像技术已经观测到电池内部存在过冷水,因此本文模型重点考虑过冷水对电池冷启动性能的影响。通过引入结冰概率函数对过冷水结冰过程的随机性进行描述,从而建立了PEMFC冷启动的三维、瞬态和多相流动数学模型。基于该模型,研究电池阴极催化层中离子聚合物的体积分数和质子交换膜的厚度对电池冷启动性能的影响。研究结果表明,增加阴极催化层中离子聚合物的体积分数,可有效促进阴极催化层中的反应生成水向质子交换膜中进行扩散,从而充分利用膜内的储水空间;减少质子交换膜的厚度,能促进质子交换膜中的离聚物水向阳极催化层扩散,在大电流密度工况下可有效缓解阳极的“膜干”现象。  相似文献   

4.
This work demonstrates that the operation of a subsaturated polymer electrolyte fuel cell in counterflow mode results in a significantly elongated relaxation time after a load change, if compared to coflow mode. This effect is investigated here by using combined dynamic locally resolved measurements of the current density, the high frequency resistance, and the relative humidity. It is shown that the elongated relaxation time is a consequence of slow membrane hydration in the region of the cell, downstream the anode flow field, where the diffusive flux of water across the membrane occurs from the anode to the cathode. Here, the anode gas stream, which is humidified upstream the anode flow field via back diffusion of water from the cathode to the anode, is the only source of water for both membrane hydration and the internal humidification of the cathode gas stream, which passes the cell in opposite direction.  相似文献   

5.
B. Carnes 《Electrochimica acta》2006,52(3):1038-1052
Transport of liquid water within a polymer electrolyte membrane (PEM) is critical to the operation of a PEM fuel cell, due to the strong dependence of the membrane transport coefficients on water content. In addition, enhanced predictive abilities are particularly significant in the context of passive air breathing fuel cell designs where lower water contents will prevail in the membrane. We investigate and analyze the numerical predictions of a recently proposed rational model for transport of protons and water in a PEM, when compared to a widely used empirical model. While the performance is similar for a saturated membrane, for PEMs with low water content, the difference in computed current density and membrane water crossover can be substantial. The effects of coupling partially saturated gas diffusion electrodes (GDLs) with the membrane are studied in both a 1D and 2D context. In addition, a simplified 1D analytical membrane water transport model is validated against the complete 1D model predictions. Our numerical results predict a higher current density and more uniform membrane hydration using a dry cathode instead of a dry anode, and illustrate that the strongest 2D effects are for water vapor transport.  相似文献   

6.
K.‐M. Yin  H.‐K. Hsuen 《Fuel Cells》2013,13(6):1213-1225
One‐dimensional model on the membrane electrode assembly (MEA) of proton exchange membrane fuel cell is proposed, where the membrane hydration/dehydration and the possible water flooding of the respective cathode and anode gas diffusion layers are considered. A novel approach of phase‐equilibrium approximation is proposed to trace the water front and the detailed saturation profile once water emerges in either anode or cathode gas diffusion layer. The approach is validated by a semi‐analytical method published earlier. The novel approach is applicable to the polarization regime from open circuit voltage to the limiting current density under practical operation conditions. Oxygen diffusion is limited by water accumulation in the cathode gas diffusion layer as current increases, caused by excessive water generation at the cathode catalyst layer and the electro‐osmotic drag across the membrane. The existence of liquid water in the anode gas diffusion layer is predicted at low current densities if high degrees of humidification in both anode and cathode feeds are employed. The influences of inlet relative humidity, imposed pressure drop, and cell temperature are correlated well with the cell performance. In addition, the overpotentials attributed from individual components of the MEA are delineated against the cell current densities.  相似文献   

7.
质子交换膜燃料电池二维全电池两相流综合数值模型   总被引:1,自引:1,他引:1  
张亚  朱春玲 《化工学报》2008,59(1):173-181
针对直通道质子交换膜燃料电池(PEMFC)建立了一个二维全电池综合数值模型,模型综合考虑参与电化学反应的三个要素反应物质、电子和质子的传输过程以及液态水的淹没和膜内水传输现象。研究了供气压力、液态水淹没对电池性能的影响;比较了不同输出电压、供气湿度等条件对阴极液态水饱和度分布以及电解质膜含水率的影响;预测了基准供气状态下电池的极化曲线和文献报道的实验结果吻合很好。计算结果显示:输出电压越小液态水淹没电极现象越严重;阴极液态水的生成有利于膜的浸润保持较高电导率,但是会淹没电极使有效电极面积减小,导致电池性能下降。  相似文献   

8.
Water management is of great importance to maintain performance and durability of proton exchange membrane fuel cells. This paper presents a novel proton exchange membrane (PEM) fuel cell with a humidification zone in the membrane electrode assembly (MEA) of each cell, in which the moisture of the cathode exhaust gas could transfer through the membrane to humidify anode or cathode dry gas. With a simple model, the relative humidity (RH) of the dry air exhaust from a membrane humidifier with 100% RH stream as a counter flow is calculated to be 60.0%, which is very close to the experimental result (62.2%). Fuel cell performances with hydrogen humidifying, air humidifying and no humidifying are compared at 50, 60 and 70˚C and the results indicate that humidifying is necessary and the novel design with humidifying zone in MEA is effective to humidify dry reactants. The hydrogen humidifying shows better performance in short term, while water recovered is limited and the stability is not as good as air hu-midifying. It is recommended that both air and hydrogen should be humidified with proper design of the humidifying zones in MEA and plates.  相似文献   

9.
何丽  韩喆  冯坤  牛茁  刘优贤  刘志祥 《化工进展》2018,37(2):533-539
应用交流阻抗谱法(electrochemical impedance spectroscopy,EIS)研究温度、湿度和阴、阳极过量系数4种操作条件对质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)电化学阻抗的影响,并应用复合阻容并联等效电路对实验结果进行等效拟合。实验结果表明,PEMFC单电池的电流密度为1400 mA/cm2时,阴极过量系数对PEMFC单电池高频阻抗的影响最大,温度和湿度次之,阳极过量系数影响最小;不同操作条件的改变对高频阻抗谱中的欧姆阻抗的影响非常小,主要通过影响阴阳极法拉第阻抗来影响PEMFC单电池的输出性能;等效结果和实验结果在不同频率段的阻抗表现出一致的变化规律,各阻抗的误差值能够控制在2mΩ以内,可以有效地等效替代实验结果。  相似文献   

10.
An electrolytic water removal device using a solid polymer electrolyte membrane has been developed for controlling the humidity in the atmosphere of electrical control boxes. The device consists of a solid polymer electrolyte and thin film electrodes. The anode side of the device shows a dehumidifying effect while the cathode side shows a humidifying effect. This paper reports the evaluation and separation of the anode and cathode potentials by installing a gas port as a reversible hydrogen reference electrode attached to the water removal device. The polarization curves show that the anode potential remained stable at 2 V vs RHE, while the cathode potential changed significantly.  相似文献   

11.
Mathematical model of the PEMFC   总被引:11,自引:0,他引:11  
  相似文献   

12.
阴极多孔介质中液态水的含量对PEM燃料电池阴极中的传质及其性能具有极其重要的影响。提出了一个二维、两相、稳态数学模型,研究PEM燃料电池阴极中两相水的传递及其对电池性能的影响。模型耦合了连续方程、动量方程和组分守恒方程,并将质子膜中的净水迁移通量作为边界条件之一来处理。通过实验的方法和数值模拟的方法,研究了电池操作压力和温度对电池性能的影响,同时验证了模型的有效性。模拟发现:提高操作压力和升高阴极加湿温度使电池阴极催化剂层(CTL)和扩散层(GDL)界面上的液态水含量大幅提高;升高阳极加湿温度,电池阴极CTL和GDL界面上的液态水含量变化不明显;而升高燃料电池的操作温度,阴极CTL和GDL界面上液态水的含量降低。  相似文献   

13.
A commercial 50 cm2 polymer electrolyte membrane (PEM) fuel cell with serpentine flow fields was operated at 2.0 bar and 60 °C with two orientations of the flow field channels with respect to gravity, i.e. horizontal and vertical channels. A 3 × 3 test matrix of anode and cathode reactants relative humidity was used for the performance assessment of the cell in both orientations. The cell performance and operating data, including cell voltage and resistance, were measured, and neutron radiographs were recorded during the entire operation in order to gain knowledge of the liquid water distributions within the cell for both orientations. A quantitative analysis of the results is presented in this work, comparing the cell operation for both flow field orientations. It is observed that the configuration with horizontal cathode flow field channels presents a better cell performance, and less amount of liquid water blocking the flow field channels. Thus, the results show that the selection of the cell orientation has an influence on the final performance, and it is therefore, a design parameter to be considered for a real application. The differences in the cell water content are quantitatively analyzed and discussed.  相似文献   

14.
质子交换膜燃料电池两维、两相流动模型   总被引:1,自引:0,他引:1  
提出了考虑电池内部两相流动的质子交换膜燃料电池数学模型,模拟了阳极、阴极两侧的流道和扩散层中同时发生两相流动时电池内部的各种传递特性,并用实验数据验证了该模型的准确性。模拟结果显示,当电池阴极扩散层中有液态水存在时会大大降低膜中的局部电流密度;质子交换膜中水的净通量方向可正、可负,因此电池的增湿策略应根据不同的运行工况而不断变化。  相似文献   

15.
李微微  谢晓峰  王树博 《化工进展》2020,39(z2):168-174
以阳极催化剂(IrO2)、阴极催化剂(Pt/C)含量、阴极Nafion质量分数和阳极Nafion质量分数为考察的因素,进行了四因素三水平的正交试验,以电解槽电解电压在2V时的电流密度为衡量标准,确定了配置催化剂浆料的最优配比为:阳极催化剂IrO2担载量2.0mg/cm2,阴极催化剂Pt担载量1.0mg/cm2,阳极催化剂浆料中Nafion质量分数20%,阴极催化剂浆料中Nafion质量分数25%。使用最优配比配制催化剂后制备膜电极,对该膜电极进行极化曲线测试、产氢量计算及稳定性测试,发现运行80h后,膜电极的电解性能下降,在0.6A/cm2时,电解电压从1.78V升高到2.06V。使用交流阻抗分析稳定性测试前后的各部分电阻变化,发现各部分电阻均有增加。扫描电镜发现测试后阴极催化层与膜发生明显剥离。对稳定性测试期间的循环水进行电感耦合等离子体质谱(ICP-MS)测试,发现长时间运行后,水中Ir和Pt的含量增加。  相似文献   

16.
质子交换膜燃料电池水传递模型   总被引:31,自引:3,他引:28       下载免费PDF全文
提出了用于研究质子交换膜燃料电池膜中水分布、水传递量分布、电流密度分布等的二维数学模型;系统地考察了电池温度、阴阳极压力差、增湿程度、质子膜厚度等条件对水的传递和膜中水分布的影响.计算结果表明:①阳极增湿能够提高气体进口段膜阳极侧水的含量;②使用越薄的质子膜,越能提高膜中水的含量;③阳极增湿程度越大,由阳极向阴极迁移的水量越多.  相似文献   

17.
Performance losses due to flooding of gas diffusion layers (GDLs) and flow fields as well as membrane dehydration are two of the major problems in PEFC. In this investigation, the effect of GDL on the cell water management in PEFC is studied using segmented and single cell experiments. The behaviour of four different commercial GDLs was investigated at both high and low inlet humidity conditions by galvanostatic fuel cell experiments. The influence of varying reactant humidity and gas composition was studied. The results at high inlet humidity show that none of the studied GDLs are significantly flooded on the anode side. On the other hand, when some of the GDLs are used on the cathode side they are flooded, leading to increased mass transfer losses. The results at low inlet humidity conditions show that the characteristics of the GDL influence the membrane hydration. It is also shown that inlet humidity on the anode side has a major effect on flooding at the cathode.  相似文献   

18.
Polymer electrolyte fuel cell (PEFC) mounted with two strips of polyvinyl alcohol (PVA) sponge is presented and the effect of operating conditions on the cell performance is investigated. Mounting the sponge wicks is advantageous for the humidification of dry inlet air and for the removal of liquid water in the cell. It was found that dry inlet hydrogen could be internally humidified by water diffusion from the cathode to anode when operating in a counterflow mode. The results show that the relative humidity of the inlet gases could have little effect on the performance of the cell mounted with two sponge wicks under certain operating conditions. At a cell potential of 0.5 V, the current densities of the sponge-mounted PEFC operated with dry air are 5% and 31% higher than those of the conventional one without wicks operated with saturated and dry air, respectively. The molar percentage of water vapor to total water exiting the cathode (Rgas) is an important parameter to gauge the cell performance with dry gases. A very large Rgas may cause the membrane dehydration and subsequently a low cell performance.  相似文献   

19.
双室微生物燃料电池阴阳极间水传递特性   总被引:1,自引:1,他引:0       下载免费PDF全文
胡琳彬  李俊  张亮  叶丁丁  朱恂 《化工学报》2017,68(Z1):150-154
针对双室微生物燃料电池(dual chamber microbial fuel cell,DCMFC)中的水传输现象,研究了DCMFC中水传输现象产生的原因以及影响水传输量的各种因素。结果表明,在DCMFC中,阴阳极间水传输量随着放电电流的增大而增大;当阳极液为1500 mg·L-1化学需氧量(COD)培养基和50 mmol·L-1磷酸缓冲盐的混合溶液、阴极液为50 mmol·L-1 K3[Fe(CN)6]和50 mmol·L-1磷酸缓冲盐的混合溶液,电池电流为5 mA时,电池阴阳极间的水传输量为0.045 ml·h-1。此外,研究还表明,阴阳极间PBS溶液浓度差以及质子交换膜厚度对DCMFC的阴阳极间水传输量有着重要的影响。  相似文献   

20.
Dynamics of polymer electrolyte fuel cells undergoing load changes   总被引:1,自引:0,他引:1  
Yun Wang 《Electrochimica acta》2006,51(19):3924-3933
Numerical simulations are carried out for a single-channel polymer electrolyte fuel cell (PEFC) undergoing a step increase in current density. The objective is to elucidate profound interactions between the cell voltage response and water transport dynamics occurring in a low-humidity PEFC where the membrane hydration and hence resistance hinges upon the product water. Detailed results are presented to show that a step increase in the current density leads to anode dryout due to electroosmotic drag, while it takes several seconds for water back-diffusion and anode humidified gas to re-wet the anode side of the polymer membrane. The water redistribution process is controlled by water production, membrane hydration, electroosmotic drag, and water diffusion in the membrane. The anode dryout results in a substantial drop in cell voltage and hence temporary power loss. Under extreme situations such as dry anode feed, large step increase in the current density, and/or lower temperatures, the cell voltage may even reverse, resulting in not only power loss but also cell degradation. Finally, the dynamics of current distribution after a step change in gas humidification is numerically examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号