首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A compound instrument was constructed by superimposing a dedicated pressure platform on a commercial force platform. This instrument simultaneously estimates the ground reaction force resultants (vertical and shear forces, free moment and location of the center of pressure), pressure distribution throughout the foot-floor contact area, the trajectory of the center of pressure superimposed on the contact area (footprint). On the basis of the readings provided by the force plate we calibrated pressure sensors more accurately. We could therefore accurately estimate the vertical local components of the ground reaction. This information and the measured shear force resultants were essential for computing the shear forces acting on elementary areas corresponding to the active surface of each pressure sensor. This, in turn, allowed us to estimate the vertical and shear force resultants and free moment for subareas of the foot. This is a feature peculiar to this compound instrument, and for its effective exploitation we have implemented a few methods for the reliable identification of the subareas of interest. Two application instances are hereby reported.  相似文献   

2.
Samples of austenitic stainless steel DIN 1.4970 containing about 40 ppm of boron and a boron-free version of this steel were creep tested at 700 °C in both the solution-annealed and aged conditions to determine their creep ductility and strength. The microstructure before creep tests was determined using transmission electron microscopy. The distribution of boron in both the steels after solution annealing (SA) and aging was mapped by means of α-autoradiography. It has been observed that in the solution-annealed condition, the creep strength of 1.4970 steel is higher than that of the boron-free version; whereas after aging, the strength of 1.4970 steel is lower than that of the boron-free version. The creep ductilities were hardly influenced by the presence of boron. The results are discussed in terms of microstructure and boron distribution in the matrix. Formerly with the Indira Gandhi Centre for Atomic Research, Kalpakkam, India.  相似文献   

3.
《Acta Metallurgica》1986,34(2):269-278
The annealing response of specimens of TiN dispersion hardened 20%Cr-25%Ni stainless steel after primary creep to a range of strains at 160 MPa, 1123 K is described (the microstructural development during primary creep has been reported elsewhere). It is shown that there is a driving force not only for reduction of the density, but also for an increase in perfection of the creep-induced matrix dislocation network. Moreover, it is shown that there is a driving force for the recovery of the dislocation tangles which develop at TiN particles during deformation. The details of the way in which the network characteristics change in annealing as a function of prior creep strain are fully consistent with the development during primary creep of an internal stress distribution. The latter is modelled as arising due to the presence of the dislocation tangles, which themselves occur as a result of stress relaxation associated with Orowan bypass at TiN particles. In the presence of such an internal stress during deformation, load removal produces a negative effective applied stress in the matrix, which dominates the network behaviour. It is concluded that the model of primary creep response described earlier is realistic, and emphasised that the observed strain/time variation during deformation depends on the mutually interdependent behaviour of all the components of the dislocation substructure.  相似文献   

4.
用热变形后的直接时效(DA处理)和标准热处理对比试验的方法,对DA处理在GH169合金中的实际应用进行了探讨。结果表明,DA处理确可提高合金的拉伸强度,并大幅度提高光滑持久寿命。但由于塑性指标的降低而导致缺口持久和周期持久寿命的降低,并使疲劳、蠕变交互作用的蠕变损伤加剧。其原因是可能DA处理过程中晶界δ相析出过少,晶界晶内强度配合不良,达不到强韧化的作用。同时指出晶粒细化,并在变形工艺中对位错组态进行控制,使δ相以合理的数量和形态析出,才能获得真正应用的DA GH169合金。  相似文献   

5.
根据筒体跨间载荷在轮带处筒体横截面产生的剪力流特性及轮带处筒体的变形与平衡条件,建立了计算轮带与筒体间接触角及接触压力分布的数学模型,得出了变载荷及变间隙条件下轮带与筒体的接触角及筒体对轮带的接触压力分布规律:支承载荷增加,轮带与筒体的接触角和最大接触压力均基本按线性关系增大;间隙越大,接触角愈小,单位接触面上的压力增加。  相似文献   

6.
In biological applications of atomic force microscopy, the different surface properties of the biological sample and its support become apparent. Observed height differences between the biomolecule and its supporting surface are thus not only of structural origin, but also depend on the different sample-tip and support-tip interactions. This can result in negative or positive contributions to the measured height, effects that are described by the DLVO (Derjaguin, Landau, Verwey, Overbeek) theory. Experimental verification shows that the electrostatic interactions between tip and sample can strongly influence the result obtained. To overcome this problem, pH and electrolyte concentration of the buffer solution have to be adjusted to screen out electrostatic forces. Under these conditions, the tip comes into direct contact with the surface of support and biological system, even when low forces required to prevent sample deformation are applied. In this case, the measured height can be related to the thickness of the native biological structure. The observed height dependence of the macromolecules on electrolyte concentration makes it possible to estimate surface charge densities.  相似文献   

7.
Micromechanical Analysis of the Shear Behavior of a Granular Material   总被引:2,自引:0,他引:2  
A distinct element analysis of the behavior of a granular material was performed by simulating direct shear tests of a dense and a loose 2D sample of 1,050 cylinders. Macroscopic results exhibit typical features of the shear response of granular materials: a perfect plasticity state that does not depend on the initial density, a peak stress and a dilatant behavior in the case of the dense sample, and a contractant behavior of the loose sample. A micromechanical analysis of the shear behavior was carried out based on the simulation results. Using the particle displacements and rotations, a shear band is located within the sample. Special attention is focused on the evolution of particle∕particle contact orientation as well as on the direction of particle∕particle contact forces. The shear process induces a clear change of contact and contact force orientations. A strong correlation between the induced anisotropy of the microstructure and the macroscopic loading is evident in the simulation results.  相似文献   

8.
Current procedures for estimating the peaks of the stochastic response of tall buildings to wind are based on the assumption that the response is Gaussian. Those procedures are therefore inapplicable to low-rise buildings, in which time histories of wind-induced internal forces are generally non-Gaussian. In this paper, an automated procedure is developed for obtaining from such time histories sample statistics of internal force peaks for low-rise building design and codification. The procedure is designed for use in software for calculating internal force time series by the database-assisted design approach. A preliminary step in the development of the procedure is the identification of the appropriate marginal probability distribution of the time series using the probability plot correlation coefficient method. The result obtained is that the gamma distribution and a normal distribution are appropriate for estimating the peaks corresponding, respectively, to the longer and shorter tail of the time series’ histograms. The distribution of the peaks is then estimated by using the standard translation processes approach. It is found that the peak distribution can be represented by the Extreme Value Type I (Gumbel) distribution. Because estimates obtained from this approach are based on the entire information contained in the time series, they are more stable than estimates based on observed peaks. The procedure can be used to establish minimum acceptable requirements with respect to the duration and sampling rate of the time series of interest, so that the software used for database-assisted design will be both efficient and accurate.  相似文献   

9.
The extension of a centrifuge technique to measure adhesion and friction forces to an ultracentrifuge has been described. The equipment and procedure provide many experimental possibilities of which the adhesion of single particles to flat compacted powder surfaces has been used to measure the adhesion and friction force of starch microspheres to microcrystalline cellulose. The equipment used allows the positioning of the adhesion samples in the rotor in such a way that any angle between the centrifugal force vector and the flat sample surface can be obtained, and hence both adhesion and friction forces can be measured. The adhesion strength between starch microspheres and microcrystalline cellulose could initially be increased by applying a higher press-on force. However, a maximum plastic deformation and hence maximum contact area between the spheres and the surfaces was eventually reached, and any further application of press-on force appeared to lead only to more elastic deformation and hence not to an increase in adhesion strength. The friction between the starch microspheres and the compacted microcrystalline cellulose surfaces at a maximum deformation of the spheres is still very low, so that starch microspheres could be used as excipient in mixtures including microcrystalline cellulose for example in tabletting.  相似文献   

10.
The substructures of thermally aged, creep deformed and fatigued 2.25 Cr-1 Mo steel have been studied using optical and transmission electron microscopy. In agreement with earlier work, the substructure of the proeutectoid ferrite was found to be very stable when exposed to thermal aging or creep deformation. This stability is explained based on the tendency of molybdenum atoms to form pairs in the ferrite matrix. Nucleation and growth of additional carbide particles during creep testing was not observed. The results of these creep tests and those of Klueh have been interpreted on the basis of Mo pair stability and the affinity between molybdenum and carbon. Fatigue tests at 866 K, however, did produce a fine Mou2C precipitate which contributed to secondary cyclic hardening in tests lasting longer than 200 h. The alloy was found to undergo early cyclic hardening followed by abrupt softening within the first tens of cycles.  相似文献   

11.
Creep Modeling in Excavation Analysis of a High Rock Slope   总被引:2,自引:0,他引:2  
Based on the distinct element method, a numerical procedure is presented for simulation of creep behavior of jointed rock slopes due to excavation unloading. The Kelvin model is used to simulate viscous deformation of joints. A numerical scheme is introduced to create incremental contact forces, which are equivalent to producing creep deformation of a rock-joint system. The corresponding displacement of discrete blocks due to creep deformation of contact joints can be calculated by equilibrium iteration. Comparisons of results between the numerical model and theoretical solutions of a benchmark example show that the presented model has excellent accuracy for analysis of creep deformation of rock-joint structures. As an application of the model, residual deformations of the high rock slopes of the Three Gorges shiplock due to excavation unloading and creep behavior are investigated. By simulating the actual excavation process, the deformation history of a shiplock slope is studied. Good agreement has been achieved between numerical prediction and field measurements. It demonstrates the effectiveness of the presented model in analysis of the creep deformation due to excavation unloading of high rock slopes.  相似文献   

12.
We have previously shown that long-term regular physical exercise has a systemic influence on the rat by slowing the aging of its connective tissues, measured as thermal stability and biomechanical properties of tail tendons. This paper analyses whether the properties of limb muscle tendons are influenced not only by the aging process and the systemic effects of exercise but also from direct mechanical stimuli from long-term physical exercise. Male Sprague-Dawley rats were trained in a treadmill from the age of 5 to 23 months. The effects of training on muscle tendons were analyzed with respect to biomechanical properties. Also, the viscoelastic activation energies for interactions between collagen and the proteoglycan gel as well as between collagen fibrils were measured. Finally the asymptotes from the creep curves were calculated in order to estimate the magnitude of the viscoelastic creep. The effects of aging were analyzed with respect to the same parameters by comparing the group of 23-month-old sedentary rats with a 5-month-old baseline group. The biomechanical parameters did not change significantly with physical exercise. Neither did the activation energies change, but the asymptotes of the creep curves decreased, showing that there was less viscoelastic creep. Aging rendered the tendons significantly stronger and stiffer, increased the energy-absorbing capacity and decreased the strain values. The activation energies did not change with aging, but the high creep curve asymptote for the flexor tendons decreased. We conclude that aging rendered both types of tendons stiffer, and decreased their strain values at breaking point. Aging also increased the stress value, the energy absorption and the dry weight for the flexor tendon. Further, while physical exercise has a systemic delaying effect on age changes in connective tissues, in tendons subjected to substantial mechanical loads this effect as measured with biomechanical methods is counteracted by the optimization process elicited by the same physical exercise.  相似文献   

13.
Based on the principle of discrete element method(DEM),a 2Dslot model of a COREX melter gasifier was established to analyze the influence of cohesive zone shape on solid flow,including mass distribution,velocity distribution,normal force distribution and porosity distribution at a microscopic level.The results show that the cohesive zone shape almost does not affect the particle movement in the upper shaft and deadman shape.The particles in the lower central bottom experience large normal force to support the particles above them,while particles around the raceway and in the fast flow zone exhibit weak force network.The porosity distribution was also examined under three kinds of cohesive zones.Like the velocity distribution,the whole packed bed can be divided into four main regions.With the increase of cohesive zone position,the low porosity region located in the root of cohesive zone increases.And the porosity distribution becomes asymmetric in the case of biased cohesive zone.  相似文献   

14.
From the viewpoint of energy-saving and environment protection,it is necessary to develop Ultra Super Critical(USC) fossil-fired power plants.In order to ensure the reliable operation of power plants under high steam conditions,good mechanical properties(particularly high creep strength),corrosion resistance and fabricability are generally required for the heat resistant steels used in USC boilers.Among these heat-resistant steels,S30432 austenitic heat-resistant steels are of interest due to high creep strength,excellent oxidation and corrosion resistance at temperatures up to 650 -700℃.In this paper,the strengthening mechanism of S30432 austenitic heat-resistant steel was investigated based on the precipitation behavior of S30432 during aging and creep at 650℃.Results show that the microstructure of as-supplied S30432 steel is austenite,the main precipitation consists of only Nb(C,N).After aged for 10 000 h or crept for 10 712 h,there is a slight increase in the size of fine Nb(C,N),but the transformation from Nb(C,N) to NbCrN does not occur.Aging and creep results in the precipitation ofε-Cu and M23C6.The coarsening velocity ofε-Cu particles diminishes greatly and they are still very fine in the long-term creep range.With the increase of aging and creep time M23C6 carbides tend to coarsen gradually.The size of M23C6 is larger and the coarsening is easier in contrast toε-Cu and Nb(C,N).Nb(C,N) precipitates in the as-supplied microstructure,while aging and creep result in the precipitation ofε-Cu and M23C6.High creep rupture strength of S30432 steel is attributed to the precipitation hardening ofε-Cu,Nb(C,N) and M23C6.Extremely,ε-Cu plays an important role in improving the creep rupture strength of S30432,and at least 61%of the creep rupture strength of S30432 at 650℃results from the precipitation hardening ofε-Cu particles.  相似文献   

15.
Experimental Characterization of Dynamic Property Changes in Aged Sands   总被引:1,自引:0,他引:1  
This study investigates the aging effects on the small-strain shear modulus and damping ratio of sands and offers explanations for the measured results based on the concept of contact-force homogenization. Resonant column tests of aged sands under various aging conditions were conducted. The results show that loose sands exhibit greater aging effects than dense sands do at a confining pressure of 35?kPa and the effects are completely opposite when the aging pressure is increased to 100?kPa. The aging effects can be partially erased by unloading-reloading; the remaining effects can be restored when the applied pressure is the same as the original pressure used during aging and cannot be further erased by additional unloading-reloading cycles. The stress history is also a factor that affects aging behavior: unloading reloading and overconsolidation can reduce the aging rate in terms of the shear-modulus increase. The aging effects, however, can be wiped out by large strain shearing. An addition of fines (dry kaolinite powder) in the sand samples can increase the aging rate because of higher creep made by the kaolinite.  相似文献   

16.
岩土工程和采矿工程涉及大量的颗粒物质科学和技术难题,定量识别和提取光弹试验颗粒体系的力链网络结构和分布特征,对于认识和掌握其内部细观力学机理和研究宏观力学行为至关重要.采用彩色梯度均方值(G2)算法,建立了不同粒径的圆形颗粒和方形颗粒的接触力(F)和G2的关系;基于数字图像处理技术,提出了识别和区分图像中不同粒径圆形颗粒和方形颗粒的方法,获得了光弹图片中力链网络结构和力链分布方位.以煤矿综放开采为实例,对所提出的力链定量提取方法进行了验证分析,清晰揭示了综放采面矿压形成机理和本质特征.研究表明:单颗粒的F值与G2呈单调递增关系,且粒径越大,FG2值的增长速度越快;颗粒体系接触力集中分布在0.5相似文献   

17.
The volumetric creep of loose granular materials, in absence of pore fluid pressure, is modeled as a stochastic process of diffusion-convection for excess porosity under sustained, applied loading. The analogy of the underlying concepts, with the theory of sedimentation in Brownian motion, and differences with the earlier contribution of Marsal (1965) are discussed. The analytical formulation and numerical solution are presented for a 1D compression with finite strain and moving boundary surface. The results represent the time evolution of the spatial distribution of the material porosity and the rate of settlement. The compression versus time relationship is normalized in dimensionless form to facilitate the determination of the governing equation coefficients from test data. Examples of determination and comparisons with the model response are presented. According to the model, final settlement is reached asymptotically with equilibrium porosity. At transient states, the spatial distribution of porosity is not necessarily uniform, even when both initial and final distribution are uniform.  相似文献   

18.
19.
Interstitial additions and precipitation hardening in fully lamellar gamma TiAl have been investigated in recent years, with a prime objective of improving the high-temperature creep resistance. As a result of this alloy development effort, the alloy system K5 (Ti46Al-2Cr-3Nb-0.2W) was found to show remarkably improved creep resistance when reinforced with C or C+Si additions and then aged appropriately. Precipitation strengthening is the proposed mechanism accounting for the observed creep strengthening of K5SC alloys, with emphasis being paid on the effect of B2 particles, ζ-type silicides, and H-type carbide precipitates delineating γ/γ interfaces. In this study, the creep-deformed microstructures of fully lamellar K5 (S-C)-type alloys in aged and unaged conditions were characterized using detailed electron microscopy, involving high-resolution imaging techniques and in-situ heating studies. Overall, the presence of these particles and their relative distribution result in strengthening of the lamellar structure. The particular effect of each type of precipitate (silicides vs carbides) on creep has been assessed. New information about the nature of the light-element precipitation processes has been obtained by studying the nucleation and growth of the carbide and silicide precipitates at the expense of dissolving α 2 laths during aging. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.  相似文献   

20.
It has been hypothesized that typical speech movements do not involve large muscular forces and that normal speakers use less than 20% of the maximum orofacial muscle contractile forces that are available (e.g., Amerman, 1993; Barlow & Abbs, 1984; Barlow & Netsell, 1986; DePaul & Brooks, 1993). However, no direct evidence for this hypothesis has been provided. This study investigated the percentage of maximum interlabial contact pressures (force per unit area) typically used during speech production. The primary conclusion of this study is that normal speakers typically use less than 20% of the available interlabial contact pressure, whether or not the jaw contributes to bilabial closure. Production of the phone [p] at conversational rate and intensity generated an average of 10.56% of maximum available interlabial pressure (MILP) when jaw movement was not restricted and 14.62% when jaw movement was eliminated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号