首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Determination of strain in resonant column and torsional shear (RC/TS) tests is complicated due to nonuniform stress–strain variation occurring linearly with the radius in a soil specimen in torsion. The equivalent radius approach is adequate when calculating strain at low to intermediate levels, however, the approach is less accurate when performing the tests at higher strains. The stress integration approach involving integration of an assumed soil stress–strain model was developed to account for this problem more precisely. This approach was used to generate the plots of equivalent radius ratio versus strain developed based upon shear modulus and damping. Results showed that the equivalent radius ratio curves converge to a value of approximately 0.8 at low strains and decrease as strain increases. The equivalent radius ratio curves based upon damping decrease to significantly lower values at high strain than curves based upon shear modulus. This study suggests that using the same values of equivalent radius ratio to calculate strains for both shear modulus and damping is not appropriate. The stress integration approach provides an accurate analysis technique for evaluating both modulus and damping behavior of soil, over any range of strains in RC/TS testing.  相似文献   

2.
A series of undrained cyclic torsional simple shear tests using hollow cylindrical torsional shear apparatus was carried out to investigate the dynamic shear moduli and damping properties of clayey specimens with various sand contents and plasticity indices. The clayey soils used were collected from various sites along the coast of west Japan. Among these clayey soils, a clay sample with intermediate plasticity and another with high plasticity were mixed with silica sand at different proportions in order to examine the dynamic properties of sand-clay mixtures. In addition, experiments were carried out on undisturbed and remolded natural clay specimens with various plasticities. The effects of plasticity, loading frequency and confining pressure on the strain dependent normalized shear modulus and damping ratio were examined. Based on the results, empirical correlations for predicting the normalized shear modulus and damping ratio of remolded sand-clay mixtures at various shear strain levels were proposed.  相似文献   

3.
Regression models are presented for the dynamic properties of highly organic soils. The models are based on a database of triaxial and resonant-column/torsional-shear cyclic loading tests on thin walled tube samples mainly retrieved from the Sacramento-San Joaquin Delta. The soils in this database range from highly fibrous peat to amorphous organic clays with organic contents (OC) ranging from 14–81%, water contents ranging from 88–495%, total densities (ρ) ranging from 1.056–1.450?Mg/m3, and effective consolidation stresses (σvc′) ranging from 11–135?kPa. The secant shear modulus (G) and equivalent damping ratio (ξ) were modeled as variables dependent on the shear strain amplitude (γc), consolidation stress (σvc′), and OC. The residuals of the regression models were analyzed against other predictor variables including undisturbed density (ρ), loading frequency (f), and number of loading cycles (N). A regression model for ρ was developed, and conditional probabilities were used to improve the estimation of G and ξ when ρ measurements were available. The database of in situ measurements of shear wave velocity (Vs) was used to adjust the regression model for in situ conditions. Variances and correlations in the regression models are presented.  相似文献   

4.
The nonlinear dynamic properties of highly organic soils from two levee sites in the Sacramento-San Joaquin Delta in California are described. Cyclic triaxial, resonant column and torsional shear tests were performed on thin-walled tube samples obtained from beneath levee crests, beneath adjacent berms, and in the free field such that the in situ vertical effective stresses (σvo′) ranged from about 16?to?67?kPa. These highly organic soils had considerably different organic characteristics from those used in previous studies of dynamic properties. The tested samples had organic contents of 14 to 61%, initial water contents (wo) of 88 to 496%, shear wave velocities (Vs) of 20?to?130?m/s, and organic components that ranged from highly fibrous to highly decomposed and amorphous. Secant shear modulus (G), normalized secant shear modulus (G/Gmax), and equivalent damping ratio (ξ) versus cyclic shear strain amplitude (γc) relations are presented, and their dependence on variables such as consolidation stress, organic content, prior loading history, testing device, and loading frequency are illustrated. Findings are compared to previously published results.  相似文献   

5.
Results from dynamic penetration tests are traditionally interpreted on the basis of empirical correlations, this being a frequent criticism to these tests. An alternative rational method of interpretation is proposed in this paper from which the energy delivered to the composition of rods is used to calculate a dynamic force that represents the reaction of the soil to the penetration of the sampler (Fd). Interpretation of soil properties both in sand and clay is based on this calculated dynamic force from which the internal friction angle and the undrained shear strength can be estimated. This is achieved from a simple combination of limit equilibrium analysis and cavity expansion theory. Case studies gathered from the Brazilian experience are reported in this paper to illustrate the applicability of the proposed approach.  相似文献   

6.
This paper describes the use of a soil minipenetrometer (SMP) to determine the strength and index properties of fine-grained soils. The SMP has been developed to allow both fall cone and quasi-static penetration tests to be performed. Displacement controlled quasi-static penetration tests can be used for the direct measurement of undrained shear strength, both for remolded and undisturbed samples. In addition the quasi-static penetration test can be used to define an additional lower plastic limit parameter, the PL100, which represents the moisture content of a fine-grained soil with an undrained strength 100 times that at the liquid limit. This approach offers the advantage that removal of the coarse fraction is not required to estimate the PL100.  相似文献   

7.
Although soils are known to exhibit nonlinear behavior even at small strains, evaluations of the response of sedimentary basins to strong seismic motions are almost always based on linear, elastic solutions incorporating frequency-independent damping. The principal reasons for this relate to the robustness of the linear algorithm and the ease with which the required parameters can be determined experimentally in engineering practice. Most often, but not always, attempts are made in these analyses to compensate for the inelastic behavior by adjusting the material parameters for the representative levels of strain by means of an iterative method. However, both the standard iterative method and the direct linear solution without iterations suffer from two important shortcomings. First, they do not account for the effect of high confining pressures on inelastic behavior. However, it is known from experiments with sands subjected to cyclic shearing strains under confining pressures of up to 5 Mpa, that in highly confined samples, the material remains nearly elastic for a larger range of strains than do those samples subjected to a lesser pressure. Second, the amplification analyses disregard the fact that small-amplitude, high-frequency components of deformation involve hysteresis loops with little modulus degradation or damping (i.e., nearly elastic secondary loops). Thus, motions computed at the surface of the basin with the standard method usually exhibit unrealistically low amplitudes at high frequencies. This article presents the results obtained with a series of “true” nonlinear numerical analyses with inelastic (Masing-type) soils and layered profiles subjected to broadband earthquake motions, taking into account the effect of the confining pressure. These show that it is possible to simulate closely the actual inelastic behavior of rate-independent soils by means of linear analyses in which the soil moduli and damping change with frequency. It is emphasized that the variation in the linear model of the material parameters with frequency arises solely because the strains have broad frequency content, and not because the materials exhibit any rate dependence when tested cyclically. The proposed new model is successfully applied to a 1-km-deep model for the Mississippi embayment near Memphis, Tenn. The seismograms computed at the surface not only satisfy causality (which cannot be taken for granted when using frequency-dependent parameters), but their spectra contain the full band of frequencies expected.  相似文献   

8.
This paper presents a method to determine soil stiffness properties using measured structural modes of bridges. Normally, the identified mode shapes have to be smoothed. The mode shapes are approximated using functions describing the transverse vibration of distributed–parameter systems. Artificial coefficients are introduced into this solution in order to sum up the error contributions of displacements and its derivatives up to second order. Then, a pier-soil model based on normalized mechanical impedance functions is used. Applying this method along with more than one vertical mode shape leads to acceptable and more accurate results. The amplitudes of pier bottom vibrations are chosen as the suitable weights for the averaging procedure. For the Warth Bridge situated near Vienna, shear wave velocities and shear moduli at the pier foundations have been estimated. The results correspond quite well to the geological investigation.  相似文献   

9.
A full-scale closed-ended pile was driven into a deep deposit of soft clay that was instrumented with inclinometers and pore pressure transducers at three radial locations and three depths. This paper presents the results and interpretation of both field measurements of shear-wave velocity and the laboratory testing program performed on pre-pile and post-pile “undisturbed” specimens. A companion paper provides full details of the site investigation, field measurements of excess pore pressure, and the deformation field around the pile. Shear-wave velocity profiles at four radial distances were obtained as a function of time following pile driving using the suspension logging method. Compressibility characteristics for this soil were determined through one-dimensional constant rate of consolidation tests carried to very high stresses. Shear strength testing included anisotropically consolidated undrained triaxial tests performed on specimens at two confinement levels to study the effect of fabric and evolving anisotropy. Direct simple shear testing was performed on specimens in their normal vertical orientation, and rotated 90° to observe changes in structure/fabric orientation after pile installation.  相似文献   

10.
In situ field testing has been performed over the past several years at a silty sand site in Austin, Tex. using the borehole spectral analysis of surface waves (SASW) tool to develop the technique and assess the validity of the method. The borehole SASW tool is an inflatable pressuremeterlike device that allows surface wave measurements to be performed along the wall of an uncased borehole while varying the in situ states of stress. Field results demonstrate the applicability of borehole SASW testing as a method to characterize soil sites and provide information about in situ shear wave velocity and the relationship between shear wave velocity and state of stress. Results from a borehole SASW test conducted at the Austin site are presented herein to demonstrate the applicability and validity of the method.  相似文献   

11.
A theoretical study of the steady-state response of a saturated poroelastic soil column during compressional and rotational harmonic vibrations is presented. Hydraulic damping due to Biot flow is evaluated for top-drained and double-drained boundary conditions and for compressional and rotational motions using the theory of a damped single-degree-of-freedom system. For compressional motions, the dynamic response of gravels and sands is highly influenced by the compressibility of the pore fluid. More hydraulic damping occurs as soil hydraulic conductivity increases and as the column boundary conditions change from top drained to double drained. On the other hand, hydraulic damping for rotational motions is significantly less than that for compressional motions and is dependent on a dimensionless hydraulic conductivity parameter Ks. For Ks within the range of 10?3–100, hydraulic damping may have an important contribution to total soil damping, especially at small strain levels.  相似文献   

12.
While improvements in equipment and sampling methods have enabled collection of better quality samples of soft clays for more reliable engineering design and performance prediction, current sample quality assessment methods typically require destructive laboratory testing performed long after samples are taken. This paper describes a nondestructive technique for sample quality assessment of soft clays using shear wave velocity. A portable bender element device was used to measure shear wave velocity (Vvh) in the field immediately following collection of Sherbrooke block, tube, and split spoon samples of Boston blue clay. Vvh values were compared to in situ values from seismic piezocone (VSCPTU) tests. The ratio Vvh/VSCPTU was compared with results from a conventional, laboratory-based assessment method. Results indicate a consistent correlation between laboratory-based methods and the Vvh/VSCPTU ratio, which ranges from Vvh/VSCPTU = 0.77 for the block samples to 0.28 for split spoon samples. The portable bender element device and nondestructive assessment technique offer the potential for field quality assessment and allow for real time adjustments to sampling techniques and/or more effective selection of samples for laboratory testing.  相似文献   

13.
The objective of this study was to assess the potential of applying enhanced bioremediation on the treatment of petroleum-hydrocarbon contaminated soils. Microcosm experiments were conducted to determine the optimal biodegradation conditions. The control factors included oxygen content, nutrient addition, addition of commercially available mixed microbial inocula, addition of wood chip and rice husk mixtures (volume ratio = 1:1) as bulking agents, and addition of organic amendments (chicken manures). Results indicate that the supplement of microbial inocula or chicken manures could significantly increase the microbial populations in soils, and thus enhance the efficiency of total petroleum hydrocarbon (TPH) removal (initial TPH = 5,500?mg/kg). The highest first-order TPH decay rate and removal ratio were approximately 0.015?day?1 and 85%, respectively, observed in microcosms containing microbial inocula (mass ratio of soil to inocula = 50:1), nutrient, and bulking agent (volume ratio of soil to bulking agent = 10 to 1) during 155 days of incubation. Results indicate that the first-order TPH decay rates of 0.015 and 0.0142?day?1 can be obtained with the addition of microbial inocula and chicken manures, respectively, compared with the decay rate of 0.0069?day?1 under intrinsic conditions. Thus, chicken manures have the potential to be used as substitutes of commercial microbial inocula. The decay rate and removal ratio can be further enhanced to 0.0196?day?1 and 87%, respectively, with frequent soil shaking and air replacement. Results will be useful in designing an ex situ soil bioremediation systems (e.g., biopile and land farming) for practical application.  相似文献   

14.
15.
Hydraulic properties of soils used for water balance covers measured at the time of construction and one to four years after construction are compared to assess how the hydraulic properties of cover soils change over time as a result of exposure to field conditions. Data are evaluated from ten field sites in the United States that represent a broad range of environmental conditions. The comparison shows that the saturated hydraulic conductivity (Ks) can increase by a factor of 10,000, saturated volumetric water content (θs) by a factor of 2.0, van Genuchten’s α parameter by a factor of 100, and van Genuchten’s n parameter can decrease by a factor of 1.4. Larger changes occur for denser or more plastic fine-textured soils that have lower as-built Ks, α, and θs and higher as-built n, resulting in a reduction in the variation in hydraulic properties that can be attributed to compaction. After two to four years, many water balance cover soils can be assumed to have Ks between 10?5 and 10?3?cm/s, θs between 0.36 and 0.40, α between 0.002 and 0.2?kPa?1, and n between 1.2 and 1.5. The data may be used to estimate changes in hydraulic properties for applications such as waste containment, where long-term maintenance of hydraulic properties in shallow engineered soil layers is important.  相似文献   

16.
This paper presents the results of a laboratory investigation whose purpose was to evaluate the effects of compaction on the erodibility of cohesionless soils. By means of a recently developed flume experiment, sediment erosion rates and incipient motion, as a function of shear stress, average velocity, and dry density, have been determined for three compacted sand and gravel mixtures. A preliminary comparison of the incipient motion values shows that granular soils compacted at the Proctor optimum have a higher resistance to free surface flow erosion than those compacted at lower and higher densities. This leads one to infer that the Proctor optimum, generally used as a standard for construction, might also be an optimum for hydraulic resistance and stability. Additional comparison of the experimental data with two commonly used incipient motion criteria also suggests that Yang’s criterion is a better predictor of soil detachment than the Shields-Yalin criterion.  相似文献   

17.
Artificial neural network (ANN) models are developed in this study to correlate resilient modulus with routine properties of subgrade soils and state of stress for pavement design application. A database is developed containing grain size distribution, Atterberg limits, standard Proctor, unconfined compression, and resilient modulus results for 97 soils from 16 different counties in Oklahoma. Of these, 63 soils (development data set) are used in training, and the remaining 34 soils (evaluation data set) from two different counties are used in the evaluation of the developed models. A commercial software, STATISTICA 7.1, is used to develop four different feedforward-type ANN models: linear network, general regression neural network, radial basis function network, and multilayer perceptrons network (MLPN). In each of these models, the input layer consists of seven nodes, one node for each of the independent variables, namely moisture content (w), dry density (γd), plasticity index (PI), percent passing sieve No. 200 (P200), unconfined compressive strength (Uc), deviatoric stress (σd), and bulk stress (θ). The output layer consists of only one node—resilient modulus (MR). After the architecture is set, the development data set is fed into the model for training. The strengths and weaknesses of the developed models are examined by comparing the predicted MR values with the experimental values with respect to the R2 values. Overall, the MLPN model with two hidden layers was found to be the best model for the present development and evaluation data sets. This model as well as the other models could be refined using an enriched database.  相似文献   

18.
The use of multiple-mode dispersion data in surface wave inversion to derive shear-wave velocity (vs) profiles has increased in the past decade as the inclusion of higher mode data can improve the accuracy of the inversion results. However, the error associated with nonuniqueness in the multiple-mode inversion has not been clarified and quantified. This research focuses on the attempt to improve the accuracy of multiple-mode surface wave inversion result by optimizing the use of multiple-mode dispersion data to reduce the error associated with the nonuniqueness in inversion. In this research, an alternative approach was used where inversion of surface wave dispersion data was performed using three distinct modes. Four different vs profiles, representing regular and irregular cases, were used, and multiple-mode dispersion data were synthesized from these profiles using the dynamic stiffness matrix method as the theoretical model. The dispersion data were then inverted using the Levenberg–Marquardt method. The results demonstrated that, as expected, inclusion of higher modes did not improve the accuracy of the inversion results for the regular profiles. However, inclusion of higher modes significantly improved the uniqueness of the inversions for the irregular profiles. The results also demonstrate that regardless of the nature of the profile, the accuracy of the inversion improves when the starting profile more closely matches the true profile. Of all the inversion approaches investigated, the best approach was one where three successive inversions, using one, two, and three modes, respectively, was used, where the inverted profile from one inversion was used as a starting model for a subsequent inversion that used one additional mode.  相似文献   

19.
Volcanic activity results in a wide range of soil types with very unusual characteristics, the most remarkable of which are volcanic ash clays containing the clay minerals allophane and imogolite. In addition to these soils, volcanic activity often produces the special environmental conditions that result in the formation of diatomaceous soils, namely, water rich in dissolved silica. These soils consist of individual particles containing intraparticle voids filled with water, resulting in a very unique porous particle morphology that is quite different than stereotypical sedimentary soils. This paper presents a series of careful laboratory tests on samples of both materials found in Chile. These tests demonstrate that soils weathered from volcanic ash develop yield pressures that are similar to the preconsolidation pressure of sedimentary soils. This type of soil also shows a dramatic change in properties due to drying. In addition, diatomaceous soils and those containing allophane have very low densities, in spite of which they develop remarkably high shear strength. The need for their properties to be properly understood and taken into account in geotechnical design, especially seismic design, is emphasized, since the location of these soils generally coincides with earthquake activity, which, like volcanic activity, arises from tectonic plate interaction.  相似文献   

20.
Earth pressure balanced (EPB) full face tunneling machines have experienced a remarkable increase in the number of applications throughout the world due to both mechanical developments and a more effective use of additives to condition the ground. Conditioning modifies the mechanical and hydraulic properties of a soil by making it suitable for the pressure control in the bulk chamber and extraction with the screw conveyor. The extraction system plays a fundamental role during the EPB operations particularly for a correct application of the face pressure. Despite the extensive use of the EPB technique, little knowledge exists concerning the understanding of the behavior of conditioned soil, particularly for noncohesive ground (sand and gravel). This paper presents and describes a prototype laboratory device, which simulates the extraction of the ground from a pressurized tank with a screw conveyor. The results of a preliminary test program carried out on a medium sized sand show that the prototype device is efficient in verifying the effects of foam for an optimal use in EPB conditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号