首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A finite-volume computer code developed at the Institute for Hydromechanics, University of Karlsruhe, has been used to calculate the flow and sediment transport in a laboratory channel with constriction and movable bed. The flow is calculated by solving the fully three dimensional Reynolds-averaged Navier-Stokes equations with k?ε turbulence model. The bed deformation is obtained from an overall mass-balance equation for sediment transport and the bed-load transport is simulated with a nonequilibrium model. The calculated results for flow and scour development in the laboratory channel are compared with experimental measurements. The sensitivity of the simulated results to the nonequilibrian adaptation-length parameter in the nonequilibrium bed-load transport model is investigated systematically, which represents the main contribution of this paper.  相似文献   

2.
Experimental results on scour below a high vertical drop (drop height/critical depth >1) in uniform sands and gravels are presented. The experimental results are used to describe the effects of important parameters, identified from the dimensional analysis, on equilibrium scour depth. The important observations are that the equilibrium scour depth increases with increase in densimetric Froude number, whereas the scour depth decreases with increase in sediment size and tailwater depth. The time scale of scour depth that follows an exponential law is determined. The nondimensional time scale decreases with increase in densimetric Froude number.  相似文献   

3.
Local pier scour experiments were performed in the laboratory to investigate the effect of relative sediment size on pier scour depth using three uniform sediment sizes and three bridge pier designs at different geometric model scales. When the data from a large number of experimental and field investigations are filtered according to a Froude number criterion, the effect of relative sediment size on dimensionless pier scour depth is brought into focus. The choice of sediment size in the laboratory model distorts the value of the ratio of pier width to sediment size in comparison with the prototype which in turn causes larger values of scour depth in the laboratory than in the field. This model distortion due to sediment size is shown to be related to the scaling of the large-scale unsteadiness of the horseshoe vortex by studying the relevant time scales of its coherent structure upstream of a bridge pier using acoustic Doppler velocimeter measurements. Observations of sediment movement, probability distributions of velocity components, and phase-averaging of velocity measured upstream of a bridge pier reveal properties of coherent motions that are discussed in terms of their contribution to the relationship between dimensionless pier scour depth and the ratio of pier width to sediment size over a large range of physical scales.  相似文献   

4.
Local Scour and Riprap Stability at Bridge Piers in a Degrading Channel   总被引:2,自引:0,他引:2  
The experimental study examines local scouring and riprap stability at bridge piers in rivers subject to bed degradation. The data show that the equilibrium bed profile associated with that with or without a pier is essentially the same, except for the obvious section around the pier. Total scour depth is shown to be the sum of bed degradation and pier scour depth. The latter can be computed from the time-average live-bed scour depth associated with the undisturbed velocity ratio before bed degradation. The experimental data also show that pier-scour depth is invariant with time, for t ≥ 24?h. In a degrading channel, riprap around a pier will eventually develop into a stable mound when the bed shear stresses reduce with bed degradation. An auxiliary test shows that the mound is very vulnerable to another designed flood flow accompanied by large dunes. This type of riprap instability may be called bed-degradation induced failure.  相似文献   

5.
Clear-Water Scour below Underwater Pipelines under Steady Flow   总被引:1,自引:0,他引:1  
Experiments on clear-water scour below underwater pipelines (initially laid on the sediment bed) in uniform and nonuniform sediments under steady flow were conducted. Equilibrium scour profiles were modeled by a cubic polynomial. The experimental results are examined to describe the influence of various parameters on equilibrium scour depth. The equilibrium scour depth ds increases with increase in approach flow depth h for shallow flow depths, becoming independent of higher flow depths when h/b>5, where b=pipe diameter. However, the curves of scour depth versus sediment size d and Froude number Fb have a maximum value of ds/b = 1.65 at b/d = 27 and Fb = 0.6. The influence of sediment gradation on scour depth is prominent for nonuniform sediments, which reduce scour depth to a large extent due to the formation of armor layer within the scour hole. The influence of different shaped cross sections of pipes on the scour depth was investigated, where the shape factors for circular, 45° (diagonal facing) and 90° (side facing) square pipes obtained as 1, 1.29, and 1.91, respectively. Using the data of scour depths at different times, the time variation of scour depth is scaled by an exponential law, where the nondimensional time scale increases sharply with increase in Froude number characterized by the pipe diameter. In addition, clear-water scour below circular pipelines laid on a thinly armored sand bed (the sand bed is overlain by a thin armor layer of gravels) was experimentally studied. Depending on the pipe diameter, armor gravel, and bed-sand sizes, three cases of scour holes were recognized. The comparison of the experimental data reveals that the scour depth below a pipeline with an armor layer under limiting stability of the surface particles (approach flow velocity nearly equaling critical velocity for surface particles) is greater than that without armor layer for the same sand bed, if the secondary armoring formed within the scour hole is scattered. In contrast, the scour depth with an armor layer is less than that without armor layer for the same sand bed, when the scour hole is shielded by the secondary armor layer.  相似文献   

6.
This note focuses on the temporal and spatial evolution of local scour below low-head spillways. Steady-flow experiments were carried out in a 1-m wide and 20-m long rectangular straight channel. The jet was generated by an ogee-crest spillway followed by a positive-step stilling basin. Nearly uniform sandy beds were generally tested, but additional tests were also performed with a special bed of lead spheres. To circumvent the combination of local and general scour phenomena, tailwater depths were set such that tailwater flow intensities were below the threshold of sediment motion. As a consequence, for each run a submerged hydraulic jump formed. Tests were of long durations (of order of days) mainly to achieve conditions of quasi-equilibrium. Based on the data collected, literature approaches are discussed. Then, empirical models are proposed to estimate: (1) the maximum scour depth at the quasi-equilibrium stage and its horizontal distance from edge of stilling basin; (2) the time variation of scour depth; and (3) the axial scour profiles. The proposed equations agree well with experimental data. Findings also highlight that affinity rather than similarity may be the typical property of low-angle eroding jets.  相似文献   

7.
Control of Scour at Vertical Circular Piles under Waves and Current   总被引:1,自引:0,他引:1  
An experimental study on the control of scour at vertical circular piles under monochromatic waves and a steady current is presented. The experiments on wave and steady currents were carried out under live-bed and clear-water regimes, respectively. In waves, splitter plate attached to the pile along the vertical plane of symmetry and threaded pile (helical wires or cables wrapped spirally on the pile to form threads) were found to be effective to reduce the scour depth. For the Keulegan–Carpenter numbers 6–100, the vortex shedding is the main mechanism of scour under waves. The splitter plate and threaded pile disrupt the vortex shedding. The average reduction of the scour depth by the splitter plate was 61.6%. For threaded piles, different combinations of cable and pile sizes were tested, and the best combination was found for a cable–pile diameter ratio equaling 0.75, in which average scour depth reduction was 51.1%. The average reductions of scour depths for other cable–pile diameter ratios of 0.33 and 0.5 were 43.2 and 48.1%, respectively. On the other hand, in a steady current, the threaded pile proved to be effective to control scour depth to a great extent. Cables wrapped spirally forming threads on the pile help to weaken the downflow and horseshoe vortex, which are the principal agents of scour under a steady current. The experimental results showed that the scour depth consistently decreases with an increase in cable diameter and the number of threads, and with a decrease in thread angle. The maximum reduction of scour depth observed was 46.3% by using a triple threaded pile having a thread angle of 15° and a cable–pile diameter ratio of 0.1. The proposed methods of controlling scour are easy to install and are economical.  相似文献   

8.
A three-dimensional computational fluid dynamics model is applied to predict local scour around an abutment in a rectangular laboratory flume. When modeling local scour, steep bed slopes up to the angle of repose occur. To predict the depth and the shape of the local scour correctly, the reduction of the critical shear stress due to the sloping bed must be taken into account. The focus of this study is to investigate different formulas for the threshold of noncohesive sediment motion on sloping beds. Some formulas only take the transversal angle (perpendicular to the flow direction) into account, but others also consider the longitudinal angle (streamwise direction). The numerical model solves the transient Reynolds-averaged Navier-Stokes equations in all three dimensions to compute the water flow. Sediment continuity in combination with an empirical formula is used to capture the bed load transport and the resulting bed changes. When the sloping bed exceeds the angle of repose, the bed slope is corrected with a sand-slide algorithm. The results from the numerical simulations are compared with data from physical experiments. The reduction of the bed shear stress on the sloping bed improves the results of the numerical simulation distinctly. The best results are obtained with the formulas that use both the transversal and the longitudinal angle for the reduction of the critical bed shear stress.  相似文献   

9.
Numerical Modeling of Breach Erosion of River Embankments   总被引:4,自引:0,他引:4  
The process of breach erosion of river embankments depends on the interaction among flow, sediment transport, and the corresponding morphological changes. Levees often consist of noncohesive material with a wide range of grain sizes. The dam material is mainly eroded due to the transport capacity of the overtopping water. Both bed load and suspended load are of importance. For breach formation, the lateral erosion due to slope instabilities has a significant impact. A depth averaged, two-dimensional numerical model was developed to account for these processes. The sensitivity of the discharge through the breach related to different processes and material parameters was investigated and compared to experimental and field data. The results show that the most sensitive parameter of an erosion-based dike-breach simulation is the breach side-slope angle which determines the lateral erosion. The application of the described Model 2dMb to different embankment failures at the Elbe River illustrates its capability in simulating overtopping breaching.  相似文献   

10.
A three-dimensional numerical model was applied to compute uniform and nonuniform sediment transport and bed deformation in an S-shaped laboratory channel located at the University of Innsbruck, where detailed measurements of the velocity field and bed elevation changes were made. The channel had two bends, a trapezoidal cross section, and a slope of S = 0.005. Gravel with a mean diameter of 4.2?mm was used as movable bed material and for sediment feeding. Wu’s formula for multiple grain sizes was compared with van Rijn’s formula using one grain size. Fairly good agreement was found between the computed and measured bed elevations for both approaches, whereas Wu’s formula could further improve the numerical results. Looking at the physics of the erosion pattern, the computed scour areas were located slightly more downstream than what was observed in the physical model. The current study also includes several parameter tests: grid distribution in vertical, lateral, and longitudinal direction; time step; number of inner iterations/time step; active sediment layer thickness; and the Shields coefficient. The variation of those parameters gave some differences in the results, but the overall pattern of bed elevation changes remained the same.  相似文献   

11.
The writers’ experiments on local scour at vertical cylinders placed in a sand bed show that similitude of large-scale turbulence is an important consideration influencing equilibrium depth of local scour. For the range of cylinder diameters used in their experiments, the writers identify a direct trend between equilibrium scour depth (normalized with cylinder diameter) and the intensity and frequency of large-scale turbulence shed from each cylinder; values of normalized scour depth increased when cylinder diameter decreased. The writers offer a scour-depth adjustment factor to account for this trend, which essentially is a scale effect incurred with experiments involving three independent length scales: cylinder diameter, bed-particle diameter, and flow depth. The consequent similitude consideration, or scale effect, has general significance for laboratory studies of local scour associated with hydraulic structures in sediment beds.  相似文献   

12.
The capacity to store water in a reservoir declines as it traps sediment. A river entering a reservoir forms a prograding delta. Coarse sediment (e.g., sand) deposits in the fluvial topset and avalanching foreset of the delta, and is typically trapped with an efficiency near 100%. The trap efficiency of fine sediment (e.g., mud), on the other hand, may be below 100%, because some of this sediment may pass out of the reservoir without settling out. Here, a model of trap efficiency of mud is developed in terms of the mechanics of a turbidity current that plunges on the foreset. The dam causes a sustained turbidity current to reflect and form a muddy pond bounded upstream by a hydraulic jump. If the interface of this muddy pond rises above any vent or overflow point at the dam, the trap efficiency of mud drops below 100%. A model of the coevolution of topset, foreset, and bottomset in a reservoir that captures the dynamics of the internal muddy pond is presented. Numerical implementation, comparison against an experiment, and application to a field-scale case provide the basis for a physical understanding of the processes that determine reservoir trap efficiency.  相似文献   

13.
The unsteady flow and solid transport simulation problem in artificial channels is solved using a three-equation model, coupled with a local erosion law. The three equations are the water mass and momentum balance equations, as well as the total solid load balance equation. It is shown that even during severe hydrological events inertial terms can be neglected in the momentum equation without any substantial change in the solution sought. Empirical equilibrium formulas were used to estimate the solid load as a function of the flow variables. Local erosion, due to the scour generated at the jump between two channels connected at different bottom elevations, was estimated adapting a literature formulation. The double order approximation time and space marching scheme, previously proposed for the solution of the unsteady flow problem in the fixed-bed case, is applied to the solution of the new system. The model was validated with both literature and new laboratory experimental data. No parameter calibration was used to fit the computed results to the experimental ones.  相似文献   

14.
Numerical Modeling of Bed Deformation in Laboratory Channels   总被引:2,自引:0,他引:2  
A depth-average model using a finite-volume method with boundary-fitted grids has been developed to calculate bed deformation in alluvial channels. The model system consists of an unsteady hydrodynamic module, a sediment transport module and a bed-deformation module. The hydrodynamic module is based on the two-dimensional shallow water equations. The sediment transport module is comprised of semiempirical models of suspended load and nonequilibrium bedload. The bed-deformation module is based on the mass balance for sediment. The secondary flow transport effects are taken into account by adjusting the dimensionless diffusivity coefficient in the depth-average version of the k–ε turbulence model. A quasi-three-dimensional flow approach is used to simulate the effect of secondary flows due to channel curvature on bed-load transport. The effects of bed slope on the rate and direction of bed-load transport are also taken into account. The developed model has been validated by computing the scour hole and the deposition dune produced by a jet discharged into a shallow pool with movable bed. Two further applications of the model are presented in which the bed deformation is calculated in curved alluvial channels under steady- and unsteady-flow conditions. The predictions are compared with data from laboratory measurements. Generally good agreement is obtained.  相似文献   

15.
Two types of dispersion coefficient tensor for meandering channels were examined. The first type was estimated using measured vertical velocity profile in an S-curved channel, and the second type was based on the depth-averaged velocity field. A Petrov-Galerkin type finite element scheme was used in the numerical modeling, and the simulation results were compared with the experimental results from tracer tests in an S-curved channel. Comparison of the results show that the dispersion coefficient tensor obtained directly from velocity profiles provided a more realistic solution that can describe the abrupt expansion of tracer clouds in the transverse direction. Heterogeneous longitudinal and transverse dispersion coefficients were inversely estimated from the calculated dispersion coefficient tensor based on the velocity profiles. Extremely large transverse dispersion coefficients were formed at the apex of the channel bend, where there was a well-developed secondary current. The dimensionless transverse dispersion coefficient (DT/hu*) in the apex of the bend ranges from 0.495 to 2.60, which is about four times larger than that of the straight region.  相似文献   

16.
Clear-Water Scour at Abutments in Thinly Armored Beds   总被引:1,自引:0,他引:1  
Experiments on local scour at short abutments (ratio of abutment length to approaching flow depth less than unity), namely vertical-wall, 45° wing-wall, and semicircular, embedded in a bed of relatively fine noncohesive sediment overlain by a thin armor-layer of coarser sediment, were conducted for different flow conditions, thickness of armor-layers, armor-layer, and bed sediments. The abutments were aligned with the approaching flow in a rectangular channel. The armor-layer and the bed underneath it were composed of different combinations of uniform sediments. In the experiments, the approaching flow velocities were restricted to the clear-water scour condition with respect to the armor-layer particles. Depending on the approaching flow conditions, three cases of scour at abutments in armored beds were identified. Effects of different parameters pertaining to scour at abutments are examined. The comparison of the experimental data shows that the scour depth at an abutment with an armor-layer in clear-water scour condition under limiting stability of the surface particles (approaching flow velocity nearly equaling critical velocity for the threshold motion of surface particles) is always greater than that without armor-layer for the same bed sediments. The characteristic parameters affecting the maximum equilibrium nondimensional scour depth (scour depth-abutment length ratio), identified based on the physical reasoning and dimensional analysis, are excess abutment Froude number, flow depth-abutment length ratio, armor-layer thickness-armor particle diameter ratio, and armor particle-bed sediment diameter ratio. The experimental data of clear-water scour condition in thinly armored beds under limiting stability of surface particles were used to determine the equation of maximum equilibrium scour depth through regression analysis. The estimated scour depths were in agreement with the experimental scour depths. Also, an equation of maximum equilibrium scour depth in uniform sediments was obtained.  相似文献   

17.
Flow Intensity Parameter in Pier Scour Experiments   总被引:1,自引:0,他引:1  
Technical note discusses a detailed approach to dimensional analysis for the bridge pier scour phenomenon and the introduction of flow intensity. It demonstrates the dependence of critical upstream velocity on the rest of the parameters describing the process and its implications on dimensional analysis. Assuming that the viscous effects are negligible in the local scour phenomenon, it is concluded that the flow intensity of the approaching undisturbed flow is not an adequate parameter to describe the process in usual laboratory conditions. A new proposal is established.  相似文献   

18.
A depth-averaged two-dimensional (2D) numerical model for unsteady flow and nonuniform sediment transport in open channels is established using the finite volume method on a nonstaggered, curvilinear grid. The 2D shallow water equations are solved by the SIMPLE(C) algorithms with the Rhie and Chow’s momentum interpolation technique. The proposed sediment transport model adopts a nonequilibrium approach for nonuniform total-load sediment transport. The bed load and suspended load are calculated separately or jointly according to sediment transport mode. The sediment transport capacity is determined by four formulas which are capable of accounting for the hiding and exposure effects among different size classes. An empirical formula is proposed to consider the effects of the gravity on the sediment transport capacity and the bed-load movement direction in channels with steep slopes. Flow and sediment transport are simulated in a decoupled manner, but the sediment module adopts a coupling procedure for the computations of sediment transport, bed change, and bed material sorting. The model has been tested against several experimental and field cases, showing good agreement between the simulated results and measured data.  相似文献   

19.
Experimental results on local scour in long contractions for uniform and nonuniform sediments (gravels and sands) under clear-water scour are presented. An emphasis was given to conduct the experiments on scour in long contractions for gravels. The findings of the experiments are used to describe the effects of various parameters (obtained from dimensional analysis) on equilibrium scour depth under clear-water scour. The equilibrium scour depth increases with decrease in opening ratio and with increase in sediment size for gravels. But the curves of scour depth versus sediment size have considerable sag at the transition of sand and gravel. The scour depth decreases with increase in densimetric Froude number, for larger opening ratios, and increases with increase in approaching flow depth at lower depths. However, it becomes independent of approaching flow depth at higher flow depths. The effect of sediment gradation on scour depth is pronounced for nonuniform sediments, which reduce scour depth significantly due to the formation of armor layer in the scour hole. Using the continuity and energy equations, a simple analytical model for the computation of clear-water scour depth in long contractions is developed with and without sidewall correction for contracted zone. The models agree satisfactorily with the present and other experimental data. Also, a new empirical equation of maximum equilibrium scour depth, which is based on the experimental data at the limiting stability of sediments in approaching channel under clear-water scour, is proposed. The potential predictors of the maximum equilibrium scour depth in long contractions are compared with the experimental data. The comparisons indicate that the equations given by Komura and Lim are the best predictors among those examined.  相似文献   

20.
The TR2004 transport formulations for clay, silt, and sand as proposed in Parts 1 and 2 have been implemented in morphodynamic models to predict bed level changes. These models have been verified using various laboratory and field data cases concerning coastal flow in offshore and near-shore zones. Furthermore, the model has been applied to two complicated sediment environments concerning the flow around a spurdike in a river and the tidal flow of cohesive sediments in the Yangtze Estuary in China. Overall, it is concluded that the morphodynamic models using default settings performs reasonably well. The applied scaling factors of the sediment transport model are in the generally accepted range of 0.5–2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号