共查询到17条相似文献,搜索用时 62 毫秒
1.
聚类分析是一种无监督的模式识别方式,它是数据挖掘中的重要技术之一。给出了一种基于改进混合蛙跳算法的聚类分析方法,该方法结合了K—均值算法和改进混合蛙跳算法各自的优点,引入了K—均值操作,再用改进混合蛙跳算法进行优化,很大程度上提高了该算法的局部搜索能力和收敛速度。通过仿真对基于改进混合蛙跳的聚类方法与其他已有的聚类方法进行了比较,验证了所提出算法的优越性。 相似文献
2.
传统K均值聚类(KMC)算法过分依赖初始值的设置,容易陷入局部最优;混合蛙跳算法(SFLA)存在收敛速度和搜索速度较慢、局部和全局信息交流不全面等缺点。针对以上缺点,首先提出一种改进的混合蛙跳算法(MSFLA)。该算法根据粒子群优化和差分进化思想,在青蛙个体变异时,引入上一次移动距离的权重惯性系数和缩放因子,从种群中的最优位置和历史最优位置之间的随机点出发,以子群内的青蛙的平均值和最差位置差值为步长进行青蛙个体的更新操作。再将MSFLA与KMC算法结合提出MSFLA-KMC算法,有效地克服了KMC算法过分依赖初始值设置问题,同时降低了KMC算法陷入局部最优的可能性。实验结果表明,MSFLA具有较强的寻优能力,MSFLA-KMC算法则具有更好的聚类性能。 相似文献
3.
针对K均值聚类算法存在的对初始值敏感且容易陷入局部最优的缺点,提出一种改进的混合蛙跳算法(SFLA)和K均值相结合的聚类算法。该算法通过混沌搜索优化初始解,变异操作生成新个体,在更新青蛙位置时,设计了一种新的搜索策略,提高了算法寻优能力;根据青蛙群体的适应度方差来确定K均值算法的操作时机,抑制早熟收敛。实验结果表明,改进的算法提高了聚类精度,在全局寻优能力和收敛速度方面具有优势。 相似文献
4.
5.
目前武器装备保障维护的经验性强而科学性、智能化弱,开展智能模式识别研究有助于提高部队的维护排故能力。分析了K-均值聚类算法和混合蛙跳算法的特点,找出了二者的相似之处,针对前者对初始聚类中心的选取敏感和聚类过程中聚类中心数目不能动态调整的缺点作了相应的改进,为使二者能有机融合,对后者进行了一定的修改后用于优化改进的K-均值聚类算法。通过对某型空气压缩机车柴油机燃油系统状态技术参数样本进行仿真实验,证明了该方法能够正确聚类,且算法较优。 相似文献
6.
针对核模糊C-均值(KFCM)聚类算法存在易陷入局部极小值,对初始值敏感的缺点。将混合蛙跳算法(shuffled frog leaping algorithm,SFLA)用于KFCM中,但在聚类数较大和维数较高时,聚类效果不理想,为此提出将自适应惯性权重引入混合蛙跳算法的更新策略中,再用改进后的混合蛙跳算法求得最优解作为KFCM算法的初始聚类中心,利用KFCM算法优化初始聚类中心,求得全局最优解,从而有效克服了KFCM算法的缺点。人造数据和经典数据集的实验结果表明,新算法与KFCM和FCM聚类算法相比,寻优能力更强,迭代次数更少,聚类效果更好。 相似文献
7.
针对模糊聚类算法中存在的对初始值敏感、易陷入局部最优等问题,提出了一种融合粒子群算法和混合蛙跳算法的模糊C-均值聚算法。通过设计了一种新颖的搜索粒度系数,充分利用粒子群算法收敛速度快、局部搜索能力强的优点与混合蛙跳算法全局寻优能力强、跳出局部最优能力好的特点,同时对SFLA中更新算法进行了改进。实验结果表明,该算法提高了模糊聚类算法的搜索能力和聚类效果,在全局寻优能力、跳出局部最优能力、收敛速度等方面具有优势。 相似文献
8.
免疫规划+K均值混合聚类算法 总被引:2,自引:0,他引:2
1.引言聚类分析(Clustering Analysis)是一种无监督的模式识别方法。聚类产生的每一组数据称为一个簇,簇中的每一数据称为一个对象。聚类的目的是使同一簇中对象的特性尽可能地相似,而不同簇对象间的特性差异尽可能地大。聚类的任务是把一个未标记的模式按某种准则划分成若干子集,要求相似的样本尽量归为同一类,而不相似的样本归为不同的类,故又称无监督分类。目前,各种聚类方法已广泛应用于数据挖 相似文献
9.
从K-Means聚类算法和FCM算法混合运行的角度来探讨聚类问题,针对FCM算法初始化隶属度矩阵的随机性问题,提出了一种混合均值聚类算法。在混合算法运行过程中,利用前者的聚类结果信息来初始化后者的初始中心,依此来计算FCM算法初始隶属度矩阵,通过FCM算法的运行,最终实现数据集的聚类目的。实验结果表明该混合均值算法比单纯使用FCM算法效果好。 相似文献
10.
11.
12.
This paper presents an improved evolutionary algorithm based on quantum computing for optimal steady-state performance of power systems. However, the proposed general quantum genetic algorithm (GQ-GA) can be applied in various combinatorial optimization problems. In this study the GQ-GA determines the optimal settings of control variables, such as generator voltages, transformer taps and shunt VAR compensation devices for optimal reactive power and voltage control of IEEE 30-bus and 118-bus systems. The results of GQ-GA are compared with those given by the state-of-the-art evolutionary computational techniques such as enhanced GA, multi-objective evolutionary algorithm and particle swarm optimization algorithms, as well as the classical primal-dual interior-point optimal power flow algorithm. The comparison demonstrates the ability of the GQ-GA in reaching more optimal solutions. 相似文献
13.
为了改进模糊C-均值(FCM)聚类算法对初始值和噪声数据敏感,且易陷入局部极小值的缺点,提出一种基于选择和变异机制的蛙跳FCM算法(SMSFLA-FCM)。该算法首先将线性递减的惯性权重引入蛙跳算法的更新策略中,按照一定的概率选择适应度值较优的青蛙代替较差青蛙,并对每只青蛙个体以不同的概率变异;再用改进后的蛙跳算法求得最优解作为FCM算法的初始聚类中心;然后利用FCM优化初始聚类中心;最后求得全局最优解,从而有效克服了FCM算法的缺点。人造数据和经典数据集的实验结果表明,SMSFLA-FCM与SF-LA-FCM和FCM聚类算法相比,提高了算法的寻优能力,且迭代次数更少,聚类效果更好。 相似文献
14.
为了更好地实现聚类,在汲取传统的划分算法、层次算法特性的基础上,提出了一种新的基于划分和层次的混合聚类算法(MPH),该算法将聚类的过程分为分裂和合并两个阶段,在分裂阶段反复采用k-means算法,将数据集划分为多个同质的子簇,在合并阶段采用凝聚的层次聚类算法。实验表明,该算法能够发现任意形状、任意大小的聚类,并且对噪声点不敏感。 相似文献
15.
针对杂波环境下且量测密度差别较大的多扩展目标量测集划分问题,引入近邻传播聚类技术,提出了一种新的量测集划分算法。该算法首先采用局部异常因子检测对量测为杂波的程度进行度量,通过设定阈值的方法进行杂波滤除,同时对于目标量测密度差别较大的问题,引入一种基于共享最近邻的相似度度量方法,考虑了周围量测的影响,接着通过迭代传递两个信息量逐步寻找聚类中心,避免了对初始聚类个数的选择。仿真实验表明,与传统量测集划分算法相比,本文所提算法在保证扩展目标跟踪性能的同时,有效减少了算法的运算时间。 相似文献
16.
基于改进K-均值聚类算法的背景提取方法 总被引:2,自引:0,他引:2
背景提取是运动目标检测中重要而基础的一个环节.分析了一般静态背景提取算法的原理和缺陷,提出了一种新颖的基于改进K-均值聚类算法的背景提取方法,给出了动态三元组(DTDG)的概念,并且对每个像素用3个动态三元组进行建模,实现了原始背景的提取.实验验证了所提方案的有效性. 相似文献
17.
Clustering analysis elicits the natural groupings of a dataset without requiring information about the sample class and has been widely used in various fields. Although numerous clustering algorithms have been proposed and proven to perform reasonably well, no consensus exists about which one performs best in real situations. In this study, we propose a nonparametric clustering method based on recursive binary partitioning that was implemented in a classification and regression tree model. The proposed clustering algorithm has two key advantages: (1) users do not have to specify any parameters before running it; (2) the final clustering result is represented by a set of if–then rules, thereby facilitating analysis of the clustering results. Experiments with the simulations and real datasets demonstrate the effectiveness and usefulness of the proposed algorithm. 相似文献