首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
研究纤维素聚合度与纤维素膜的微观结构、结晶结构和强度性能等之间的关系,通过不同聚合度纤维素配比这一方法更准确地探讨了聚合度大小对纤维素膜结构和性能的影响。研究结果表明:配比为3:1时,膜结构最疏松,其次是1:3,而1:1时结构最致密。纤维素Ⅰ经NMMO工艺形成的再生纤维素其晶体结构为纤维素Ⅱ,不能生成纤维素Ⅰ;且结晶度大幅下降,晶粒尺寸也有一定减小。配比为1:1时,纤维素膜的结晶度和拉伸强度最大,但伸长率随平均聚合度的下降不断减小。  相似文献   

2.
新型再生纤维素纤维的结构与性能   总被引:2,自引:0,他引:2  
以传统再生纤维素纤维为参照,对新型再生纤维素纤维的生产工艺、结构以及性能进行了分析,为纺织加工提供了理论依据。  相似文献   

3.
随着特高压输变电的发展,对绝缘纸的性能提出严苛的要求,如何提高绝缘纸的性能面临巨大挑战。本课题研究了掺杂不同用量和不同打浆度的再生纤维素纤维对绝缘纸物理性能和电气性能的影响。结果表明,在浆料配比中,当再生纤维素纤维用量为10%时,绝缘纸的交流击穿强度较高,其中油纸击穿强度比纯的针叶木绝缘纸提高17.7%;随着再生纤维素纤维打浆度从15°SR提高到80°SR,绝缘纸的电气性能和抗张强度都呈上升趋势,其中干纸交流击穿强度从10.5 kV/mm上升至15.9 kV/mm,油纸击穿强度从37.0 kV/mm上升至52.5 kV/mm,抗张力增加5.1%。  相似文献   

4.
研究了LiCl/DMAc(氯化锂/二甲基乙酰胺)体系溶解纤维素浆粕的最佳工艺条件,加入交联剂丁烷四羧酸(BTCA)、催化剂次亚磷酸钠(SHP)制成纤维素溶液并制得纤维素膜;对该膜进行了红外光谱、断裂强力、折皱回复角和透湿性测试分析。结果表明纤维素膜与BTCA发生了交联反应,并明显提高了纤维素膜的抗皱性能。  相似文献   

5.
再生纤维素纤维的性能及产品风格   总被引:4,自引:0,他引:4  
新型纤维素纤维的出现适时地满足了人们的需求,同时也部分缓解了能源短缺的问题.文章对Modal、Tencel、Viloft、天竹、再生麻等纤维的原料来源及生产工艺进行了概述,并对几种纤维物理化学性能进行了分析比较,评价了各种纤维及其混纺织物的风格.  相似文献   

6.
为制备高强度、高透明度和表面平整的再生纤维素膜,本研究采用加热干燥处理提高再生纤维素膜的性能。研究表明,提高再生纤维素膜干燥的处理温度可以强化纤维素分子链间的致密结合效果,最终提高再生纤维素膜的透光率,降低再生纤维素膜的表面粗糙度,也大幅度提高了再生纤维素膜的强度性能;同时提高干燥压力可以进一步强化干燥处理的效果。在干燥温度80℃和干燥压力0. 1 MPa条件下,可以制备出透光率95%、厚度10μm、表面粗糙度13 nm、拉伸强度122 MPa的透明再生纤维素膜。  相似文献   

7.
为将纳米纤维膜应用于蛋白质分离处理,用静电纺丝和化学改性方法制备聚丙烯腈/再生纤维素(PAN∕ RC)复合纳米纤维膜,通过扫描电镜、红外光谱、比表面积及孔径分析等对制备的复合纳米纤维膜进行了表征,并将制备的再生纤维素复合纳米纤维膜作为分离层,构建膜分离系统并分离纯化血清白蛋白,通过调节操作压力和过滤时间等影响因素,确定其分离纯化过程的最佳条件。研究结果表明:在操作压力为0.10 MPa、过滤时间为1.5h条件下,再生纤维素复合纳米纤维膜对蛋白质的截留率达到80.04%,膜通量达到1.85L ∕ (m²?min),与商用聚醚砜超滤膜相比,在截留率差异不大的情况下,膜通量有了数倍的提升;同时再生纤维素复合纳米纤维膜具有优异的重复使用能力,并在使用的过程中保持良好的纳米纤维形态结构。  相似文献   

8.
胡雪敏  张海燕 《染整科技》2005,(4):48-50,53
近年来,新型再生纤维素纤维(如:Modal、Tencel、天竹、再生麻等纤维)的不断出现,适时地满足了人们的需求,同时也部分缓解了当今世界资源匮乏、自然环境遭到破坏的问题。笔者对上述几种新型再生纤维素纤维都进行过不同程度的研究。在此对纤维性能作评述。  相似文献   

9.
对聚丙烯非对称固液分离膜进行紫外线辐射处理,得到不同温度下分离膜的老化规律,通过对分离膜的形态结构、物理机械性能和浸润性能进行研究,结果表明:在45 ℃处理1 d后,聚丙烯分离膜表面出现C=O伸缩振动峰,说明膜表面开始被氧化;在45 ℃和60 ℃分别处理6 d和4 d后,分离膜的断裂强度保持率分别为2.28%和5.81%,已失去使用价值,且膜表面的亲水性消失,导水性明显下降。  相似文献   

10.
浅谈新型再生纤维素纤维的发展前景   总被引:1,自引:0,他引:1  
本文介绍了新型再生纤维素纤维的性能和特点,从资源、市场、环保三方面分析了新型再生纤维素纤维的发展前景。  相似文献   

11.
膜分离技术具有分离效率高、易控制、无污染等优点,成为水处理技术的首要选择。商品有机膜主要为聚砜类、聚偏氟乙烯类合成高分子膜和再生纤维素及其衍生物类天然高分子膜。本文在对不同分离膜的优缺点及应用领域概述的基础上,对再生纤维素微滤膜、超滤膜和纳滤膜的制备、化学改性及应用现状进行了综述,进而阐述了分离性能、力学性能及抗污染性能对再生纤维素膜在水处理中的影响与研究进展。  相似文献   

12.
以竹纤维素再生膜为基膜,海藻酸钠和羧甲基纤维素的共混溶液为涂覆液,环氧氯丙烷为交联剂,采用交联法制备了一种新型纤维素复合纳滤膜。研究了纳滤膜的制备工艺和对NaCl、Na_2SO_4、MgCl_2、MgSO_4、CaCl_2(500 mg/L)的截留性能。结果表明,在海藻酸钠与羧甲基纤维素共混溶液质量分数2.0%、共混比1∶3、环氧氯丙烷质量分数3.0%条件下,纤维素复合纳滤膜的膜通量为13.75 L/(m~2·h),Na Cl截留率为48.15%,较纤维素再生膜的膜通量(487.81 L/(m~2·h))下降明显,较纤维素再生膜的截留率(1.52%)有明显提高。对几种无机盐的截留性能顺序为:Na_2SO_4﹥Mg SO4﹥Na Cl﹥Mg Cl2﹥Ca Cl2。相比纤维素再生膜,纤维素复合纳滤膜的抗张力为83.31 N,比纤维素再生膜的抗张力(46.65 N)提高了44.0%,膜伸长量4.7 mm,伸长率9.40%,抗张强度5.554 k N/m,机械性能相对提高。  相似文献   

13.
以NaOH/尿素/硫脲、[Amim]Cl、[Amim]Cl/DMF和氯化胆碱/尿素低共熔溶剂4种溶剂作为纤维素浆粕的溶剂体系并制备再生纤维素膜。采用红外光谱、X射线衍射、热重分析、扫描电镜和万能材料试验机对再生纤维素及再生纤维素膜进行结构表征。结果表明,将纤维素溶解在不同溶剂体系中,再生纤维素晶型均由纤维素Ⅰ型转变为纤维素Ⅱ型,再生纤维素的结晶度、热稳定性及再生纤维素膜的力学性能均有不同程度的降低。从再生纤维素膜性能及成本核算方面考虑,[Amim]Cl /DMF溶剂体系制备再生纤维素膜效果最佳。  相似文献   

14.
本研究以竹溶解浆为原料,通过简单的溶解再生技术制备高性能的纤维素膜,并通过调节成膜的厚度得到离子电导率为0.099 mS/cm的膜材料。结果表明,较低厚度的纤维素膜可以产生较高的开路电压、短路电流和功率输出密度:在500倍盐浓度差下,32μm纤维素膜具有-119 mV的开路电压、132.4μA短路电流和16.33 mW/m2的输出功率密度。  相似文献   

15.
为初步明确菠萝叶纤维素膜对部分水果的保鲜效果,以青枣和鲜切菠萝为保鲜对象,研究菠萝叶纤维素膜对两种水果的保鲜效果及自身降解性能。研究结果表明,菠萝叶纤维素膜具有良好的可降解性和生物相容性,纤维素酶和灰霉对其具有明显的降解作用;菠萝叶纤维素膜可在一定程度上抑制果外观商品性劣变,有效遏制果实失重率、硬度和VC含量的下降,减缓可溶性固形物和总糖含量的上升。综上,菠萝叶纤维素膜可有效提高青枣和鲜切菠萝的常温贮藏品质,在鲜食果蔬贮藏保鲜领域具有较好的应用前景。  相似文献   

16.
分别利用硫酸盐阔叶木浆、硫酸盐针叶木浆和机械浆抄造纸质基膜并测定其过滤性能;采用溶液过滤复合法,通过过滤使分散均匀的细菌纤维素在纸质基膜上形成一层致密薄膜层,即得到细菌纤维素纸质复合微滤膜。结果表明:采用打浆度为10°SR的机械浆抄造定量为90 g/m2的纸质基膜的过滤性能最好;采用该纸质基膜制备的细菌纤维素纸质复合微滤膜(细菌纤维素复合量6 g/m2)平均孔径为0.01~1 μm,达到微滤膜水平,且强度性能、耐高温性、耐碱性良好。  相似文献   

17.
探讨了以秸秆水解液作为唯一碳源生产细菌纤维素的工艺参数,并考察了细菌纤维素湿膜对漂白硫酸盐阔叶木浆(LBKP)纸张性能的影响。实验结果表明,以秸秆水解液作为唯一碳源,采用动静两步法制备细菌纤维素的最大产量为4.27 g/L;细菌纤维素湿膜添加到LBKP中能够明显提高纸张抗张指数、撕裂指数、耐破指数、耐折度、透气度等物理性能。  相似文献   

18.
本研究以纳米微纤化纤维素(NFC)和石墨烯(GR)为原料,通过湿法造纸技术,制备超薄高导热复合膜(GR/NFC膜),并探讨了GR含量和膜定量对GR/NFC膜性能的影响.结果表明,GR含量和GR/NFC膜的定量均会影响GR/NFC膜的整体性能.TG-DSC分析显示,随GR含量增加,GR/NFC膜的热稳定性增加,膜内部孔隙...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号