首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple seam interactions are a major source of ground instability in several U.S. coalfields. Empirical methods are well suited for this problem, because while the mechanics multiple seam interactions are very complex and poorly understood, many mining case histories are available for analysis. This study makes use of an updated database that includes 356 multiseam case histories, including 67 unsuccessful designs. The paper describes in detail the process used to design the study, collect the data, conduct the statistical analysis, and develop the quantitative model. The model can be used for mine planning in multiple seam situations, and has been made available as a module within the Analysis of Coal Pillar Stability(ACPS) computer program.  相似文献   

2.
The method of determining coal pillar strength equations from databases of stable and failed case histories is more than 50 years old and has been applied in different countries by different researchers in a range of mining situations. While common wisdom sensibly limits the use of the resultant pillar strength equations and methods to design scenarios that are consistent with the founding database, there are a number of examples where failures have occurred as a direct result of applying empirical design methods to coal pillar design problems that are inconsistent with the founding database. This paper explores the reasons why empirically derived coal pillar strength equations tend to be problem-specific and should be considered as providing no more than a pillar strength ‘‘index." These include the non-consideration of overburden horizontal stress within the mine stability problem, an inadequate definition of supercritical overburden behavior as it applies to standing coal pillars, and the non-consideration of overburden displacement and coal pillar strain limits. All of which combine to potentially complicate and confuse the back-analysis of coal pillar strength from failed cases. A modified coal pillar design representation and model are presented based on coal pillars acting to reinforce a horizontally stressed overburden, rather than suspend an otherwise unstable self-loaded overburden or section, the latter having been at the core of historical empirical studies into coal pillar strength and stability.  相似文献   

3.
Longwall mining has existed in Utah for more than half a century. Much of this mining occurred at depths of cover that significantly exceed those encountered by most other US longwall operations. Deep cover causes high ground stress, which can combine with geology to create a coal burst hazard. Nearly every longwall mine operating within the Utah's Book Cliffs coalfield has been affected by coal bursts. Pillar design has been a key component in the burst control strategies employed by mines in the Book Cliffs.Historically, most longwall mines employed double-use two-entry yield pillar gates. Double-use signifies that the gate system serves first as the headgate, and then later serves as the tailgate for the adjacent panel. After the 1996 burst fatality at the Aberdeen Mine, the inter-panel barrier design was introduced.In this layout, a wide barrier pillar protects each longwall panel from the previously mined panel, and each gate system is used just once. This paper documents the deep cover longwall mining conducted with each type of pillar design, together with the associated coal burst experience. Each of the six longwall mining complexes in the Book Cliffs having a coal burst history is described on a panel-by-panel basis.The analysis shows that where the mining depth exceeded 450 m, each design has been employed for about 38000 total m of longwall panel extraction. The double-use yield pillar design has been used primarily at depths less than 600 m, however, while the inter-panel barrier design has been used mainly at depths exceeding 600 m. Despite its greater depth of use, the inter-panel barrier gate design has been associated with about one-third as much face region burst activity as the double-use yield pillar design.  相似文献   

4.
A deterministic approach is frequently used in engineering design. In this quantitative design methodology, a safety factor, which is typically a strength-to-stress ratio, is derived as an index for the stability assessment of the engineering design. In underground coal mining applications such as pillar design,however, the inputs of pillar design are variables. This is widely overlooked in the deterministic approach. A probabilistic approach assessing the probability of failure or reliability of a system might be an alternative to the conventional quantitative methodology. This approach can incorporate the degree of uncertainty and deviations of variables and provide more versatile and reliable results. In this research, the reliability of case histories from stable and failed pillars of South Africa presented by Merwe and Mathey is examed. The updated Salamon and Munro strength formula(S-M formula) and Merwe and Mathey strength formula(M-M formula) are evaluated through a probabilistic approach. It is concluded that stable pillar cases have a reliability value greater than 0.83 while the reliability value of failed pillar cases are slightly larger than 0.50. There seems to be a positive relation between safety factor and reliability. The reliability of a pillar increases with pillar width but decreases with depth of cover, pillar height and entry width. The reliability analysis also confirms that M-M strength formula has a better distinction between the stable and failed pillar cases.  相似文献   

5.
Coal pillar design has historically assigned a factor of safety(Fo S) or stability factor(SF) according to their estimated strength and the assumed overburden load acting on them. Acceptable Fo S values have been assigned based on past mining experience or a statistical link between Fo S and probability of failure(Po F). Pillar width-to-height(w/h) ratio has long been established as having a material influence on both pillar strength and its potential failure mode. However, there has been significant disagreement on using both factor of safety(Fo S) and w/h as part of pillar system stability criterion, as compared to using Fo S in isolation. This paper will argue that there are valid technical reasons to bring w/h ratio into system stability criteria(other than its influence on pillar strength), as it is related to the post-failure stiffness of the pillar, as measured in situ, and its interaction with overburden stiffness. When overburden stiffness is also brought into pillar system stability considerations, two issues emerge. The first is the width-todepth(W/D) ratio of the panel and whether it is sub-critical or super-critical from a surface subsidence perspective. The second relates to a re-evaluation of pillar Fo S based on whether the pillar is in an elastic or non-elastic(i.e., post-yield) state in its as-designed condition, as this is relevant to maintaining overburden stiffness at the highest possible level. The significance of the model is the potential to maximise both reserve recovery and mining efficiencies without any discernible increase in geotechnical risk, particularly in thick seams and higher depth of cover mining situations. At a time when mining economics are, at best, marginal, removing potentially unnecessary design conservatism is of interest to all mine operators and is an important topic for discussion amongst the geotechnical community.  相似文献   

6.
For decades, pillar recovery accounted for a quarter of all roof fall fatalities in underground coal mines.Studies showed that a miner on a pillar recovery section was at least three times more likely to be killed by a roof fall than other coal miners. Since 2007, however, there has been just one fatal roof fall on a pillar line. This paper describes the process that resulted in this historic achievement. It covers both the key research findings and the ways in which those insights, beginning in the early 2000 s, were implemented in mining practice. One key finding was that safe pillar recovery requires both global and local stability.Global stability is addressed primarily through proper pillar design, and became a major focus after the2007 Crandall Canyon mine disaster. But the most significant improvements resulted from detailed studies that showed that local stability, defined as roof control in the immediate work area, could be achieved with three interventions:(1) leaving an engineered final stump, rather than extracting the entire pillar,(2) enhancing roof bolt support, particularly in intersections, and(3) increasing the use of mobile roof supports(MRS). A final component was an emphasis on better management of pillar recovery operations.This included a focus on worker positioning, as well as on the pillar and lift sequences, MRS operations,and hazard identification. As retreat mines have incorporated these elements into their roof control plans,it has become clear that pillar recovery is not ‘‘inherently unsafe." The paper concludes with a discussion of the challenges that remain, including the problems of rib falls and coal bursts.  相似文献   

7.
Researchers from the National Institute for Occupational Safety and Health(NIOSH) are developing a coal pillar rib rating(CPRR) technique to measure the integrity of coal ribs. The CPRR characterizes the rib composition and evaluates its impact on the inherent stability of the coal ribs. The CPRR utilizes four parameters: rib homogeneity, bedding condition, face cleat orientation with respect to entry direction,and rib height. All these parameters are measurable in the field. A rib data collecting procedure and a simple sheet to calculate the CPRR were developed. The developed CPRR can be used as a rib quality mapping tool in underground coal mines and to determine the potential of local rib instabilities and support requirements associated with overburden depth. CPRR calculations were conducted for 22 surveyed solid coal ribs, mainly composed of coal units. Based on this study, the rib performance was classified into four categories. A preliminary minimum primary rib support density(PRSD) line was obtained from these surveyed cases. Two sample cases are presented that illustrate the data collection form and CPRR calculations.  相似文献   

8.
采用岩层移动角进行留设保护煤柱的传统方法,增大了保护煤柱呆滞量,造成了煤炭资源的巨大浪费.为了探讨综放开采条件下保护煤柱留设的最优尺寸,基于潞安矿区王庄煤矿的地质采矿条件,提出了根据建筑物采动损害允许的临界变形值进行优化设计保护煤柱的新思路.按照概率积分法,预测计算开采工作面位于不同停采线位置时保护煤柱留设的合理尺寸,分析了不同开采方案下建筑物所受采动的影响面积、地表下沉程度及倾斜变形、拉伸变形等地表移动变形对建筑物采动损害的影响程度.通过11个方案的分析比较,结合经济与社会效益,给出了建筑物下保护煤柱留设的最优方案,为综放开采条件下建筑物压煤开采提供了科学依据.  相似文献   

9.
The study analyzes the characteristics of roof movement in mining top coal of inclined coal seam, and establishes the mechanical model of support and surrounding-rock stability in inclined coal seam. Besides, this study carries out the numerical calculation and field observation of roof movement and support stability, and provides the critical control measures. The results show that the fracture firstly appears in middle-upper roof and extends upwards in top coal caving in inclined coal seam; regular and irregular caving zones appear in middle-upper stress concentration region, and the asymmetric caving arch is finally formed. Support load of middle-upper working face is larger than that of the middle-lower face; dynamic load coefficient of upper support is large, and the load on the front of support is larger than that on the rear of it, which leads to poor support stability. Stability of support and surrounding-rock system depends mainly on upper-support stability.  相似文献   

10.
A limestone mine in Ohio has had instability problems that have led to massive roof falls extending to the surface. This study focuses on the role that weak, moisture-sensitive floor has in the instability issues.Previous NIOSH research related to this subject did not include analysis for weak floor or weak bands and recommended that when such issues arise they should be investigated further using a more advanced analysis. Therefore, to further investigate the observed instability occurring on a large scale at the Ohio mine, FLAC3 D numerical models were employed to demonstrate the effect that a weak floor has on roof and pillar stability. This case study will provide important information to limestone mine operators regarding the impact of weak floor causing the potential for roof collapse, pillar failure, and subsequent subsidence of the ground surface.  相似文献   

11.
Rockburst is defined as a phenomenon with immediate dynamic instability under excavation unloading conditions of deep or high geostress areas. Inadequate knowledge and lack of characterizing information prevent engineers and experts from achieving appropriate prediction results related to the rockburst behaviour. In this study, a data set including 220 rockburst instances was collected for rockburst classification via the geostatistical method. An update of the 2D graph, the tunnel rockburst classification(TRC)chart, was introduced based on analysing three indicators, namely, elastic energy index(Wet), tangential stress in rock mass(rh), and uniaxial compressive strength(rc). Distribution and correlation of data were drawn on 2D plot, and the boundaries of rockburst were distinguished according to the achieved interpolate points by kriging method. Hierarchically, the validation phase was performed using an additional set of 28 case histories obtained from several projects around the world. The results showed that the TRC chart with an average error percentage of 3.6% in the prediction of rockburst had a significant and effective implementation in comparison to the exiting heuristic systems. Despite the initial character of the prediction, the described chart may be a helpful tool in the first steps of design and construction.  相似文献   

12.
0 INTRODUCTIONAsoneoftheimportantmodernengineeringtasks ,vibrationcontrolisusuallyclassifiedintotwogroups :pas sivecontrolandactivecontrol.Thepassivecontrolisawidelyappliedmethodandhasmanyadvantagessuchaseasyrealization ,lowcostandhighreliability .Neverth…  相似文献   

13.
In order to improve the utilization rate of foam,an arc jet nozzle was designed for precise dust control.Through theoretical analysis,the different demands of foam were compared amongst arc jets,flat jets and full cone jets when the dust source was covered identically by foam.It is proved that foam consumption was least when an arc jet was used.Foam production capability of an arc jet nozzle under different conditions was investigated through experiments.The results show that with the gas liquid ratio(GLR)increasing,the spray state of an arc jet nozzle presents successively water jet,foam jet and mist.Under a reasonable working condition range of foam production and a fixed GLR,foam production quantity increases at first,and then decreases with the increase of liquid supply quantity.When the inner diameter of the nozzle is 14 mm,the best GLR is 30 and the optimum liquid supply quantity is0.375 m~3/h.The results of field experiments show that the total dust and respirable dust suppression efficiency of arc jet nozzles is 85.8%and 82.6%respectively,which are 1.39 and 1.37 times higher than the full cone nozzles and 1.20 and 1.19 times higher than the fiat nozzles.  相似文献   

14.
新型环梁式圆形煤仓结构的受力特点及优化设计   总被引:1,自引:0,他引:1  
提出一种新型钢筋混凝土圆形煤仓的结构方案,主要思想是将扶壁柱保留,沿扶壁柱竖向布置上、中、下3道封闭环梁,整个结构形成梁-板整体结构,扶壁柱由于受到环梁的弹性支座式约束,设计截面可比普通悬臂式扶壁柱截面小很多;再加上底部环梁的约束,扶壁柱底部向外的径向位移受到限制,使基础设计内力大为减小,其设计更加容易实现.此方案具有很好的经济性和适用性,并已成功用于电厂煤场实际工程中.  相似文献   

15.
针对深圳妈湾电厂边坡勘察设计施工过程,在查明边坡岩体的工程地质条件的基础上,进行稳定性分析,做出边坡的设计及开挖施工方案.通过开挖时的全过程工程地质追踪和编录、岩体物理力学性质参数、稳定性分析,指出开挖后边坡可能存在的潜在不稳定因素,提出了合理的加固设计方案.  相似文献   

16.
Explaining fundamentals of application of cable bolting for a thick seam depillaring,this paper summarizes the results of field studies conducted during adoption of this approach in more than fifteen panels of Madhusudanpur 7 pit and incline mine.Nearly 7.0 m thick Kajora top coal seam of this mine is developed on pillars along the floor horizon to an average height of 3.0 m,leaving a coal band of around 4.0 m along the roof.Analysis of procured core samples showed that roof strata are easily caveable with a caveability index value of around 2000 only.Easily caveable overlying strata and shallow depth of cover alleviated most of the expected strata mechanics problems of the thick seam mining.However,extraction of total thickness at shallow cover caused differential-subsidence and cracks on the surface.These manifestations were immediately tackled to avoid creation of a breathing path for spontaneous heating in the extracted area.  相似文献   

17.
分析汽车电子控制系统中常用的几种控制理论,分析汽车无级变速传动装置(CVT)控制系统的要求和特点。根据CVT的起步控制、速比控制和夹紧力控制的不同特点给出了相应的控制方案。并对各方案进行了分析。  相似文献   

18.
Irregular shape workface would result in the presence of coal pillar, which leads to high stress concentration and possibly induces coal bumps. In order to study the coal bump mechanism of pillars, static and dynamic stress overlapping(SDSO) method was proposed to explain the impacts of static stress concentration and tremors induced by mining activities. The stress and deformation in surrounding rock of mining face were analyzed based on the field case study at 1303 workface in Zhaolou Coal Mine in China.The results illustrate that the surrounding rock of a workface could be divided into four different zones,i.e., residual stress zone, stress decrease zone, stress increase zone and original stress zone. The stress increase zone is prone to failure under the SDSO impact loading conditions and will provide elastic energy for inducing coal bump. Based on the numerical modelling results, the evolution of static stress in coal pillar as the size of gob increasing was studied, and the impact of dynamic stress was investigated through analyzing the characteristics of tremor activities. The numerical results demonstrate the peak value of vertical stress in coal pillar rises from about 30 MPa with mining distance 10 m to 52.6 MPa with mining distance 120 m, and the location of peak stress transfers to the inner zone of coal pillars as the workface moves forward. For the daily tremor activities, tremors with high energy released indicate high dynamic stress disturbance on the surrounding rock, therefore, the impact of dynamic stressing is more serious during workface extension period because the tremor frequency and average energy after workface extension are higher than those before the workface extension.  相似文献   

19.
建筑工程概预算(工程量)软件分析与设计   总被引:2,自引:0,他引:2  
从软件工程的角度对建筑工程概预算(工程量)的全过程进行了工程化分析与设计.以人工计算工程量的过程为基础进行需求分析;用数据流图的方式表示工程概预算(工程量)的计算过程;并采用结构化方法进行系统设计,将数据流图转化为系统结构图;同时对用户界面进行了可视化设计.  相似文献   

20.
Two miners were fatally injured when a pillar bump occurred during retreat mining in a southern West Virginia coal mine. The mine was operating in the Eagle seam with overmining in the No. 2 Gas and Powellton seams. A coal bump is defined as a sudden and violent failure of coal caused by the release of stored strain energy in the pillar. While significant strides have been made by academia, industry,and regulatory agencies to better understand bump conditions and mitigation techniques, coal bumps represent a long standing, highly site-specific engineering problem in which the exact failure mechanism is not clearly understood. In this case history, a cut-by-cut analysis of retreat mining operations was conducted on the 4 East Main leading up to the pillar bump event. Numerical input parameters were derived from site-specific geologic information and mine geometry for the analysis of pillar stress conditions and energy release using LaModel. An overview of stress conditions in the panel was presented including a precursor event that occurred two crosscuts inby the bump site. The methodology presented in the paper for the evaluation of the fatal bump event can be used for the identification of bump prone conditions prior to development and retreat of a mining area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号