共查询到20条相似文献,搜索用时 0 毫秒
1.
针对五轴数控机床后置处理中由于平动轴和旋转轴的联动产生的非线性误差,提出一种基于误差建模的非线性误差在线预测与补偿方法.根据任意两个相邻刀位数据点产生的非线性误差,获得误差的分布特征,建立起误差分布模型;利用最小二乘法求解出非线性误差的数学表达式,经与误差许用值相比较来确定新的刀位点,从而实现非线性误差的在线预测及补偿... 相似文献
2.
为了提高数控机床的加工精度,解决由机床三维空间误差引起的工件加工质量降低的问题,在研究多体系统理论误差建模技术的基础上,提出离线补偿和嵌入式补偿两种补偿策略。离线补偿是基于数控加工程序的修正补偿,将机床三维空间误差映射到数控加工程序,通过修改加工程序实现对机床的三维空间误差补偿;嵌入式补偿是基于数控系统的在线补偿,将机床三维空间误差融合到数控系统中,通过修正数控系统中的数据流实现对机床的三维空间误差补偿。实验表明,在不影响机床可靠性的前提下,两种补偿策略均显著提高了数控机床的加工精度。 相似文献
3.
数控机床热变形引起的误差通常占到总体误差的40%~70%。以某公司生产的某型卧式数控车床为研究对象,检测主轴热误差和X进给轴热误差,基于最小二乘法对该机床主轴X、Y、Z向和X进给轴分别建立热误差模型。考虑到实测环境温度相对参考温度20℃时滚珠丝杠伸长的因素,对主轴热误差实测值进行了修正。根据主轴X向修正后的热误差模型和X进给轴热误差模型建立了X轴综合热误差模型,并采用西门子840D系统进行了热误差补偿试验,热误差降低了54.5%,CP值由1.34提升至1.88,证明此该建模与补偿方法有效、可行。 相似文献
4.
研究五轴数控机床的综合误差建模与补偿方法.系统地分析了机床几何误差与热误差,并提出了其新的分类方法和一种直观形象的杆、副误差矩阵描述方法,根据这种误差描述方法建立了五轴数控机床的综合误差模型,最后根据矩阵微分法建立了机床综合误差补偿模型. 相似文献
5.
轮廓误差补偿方法研究 总被引:1,自引:0,他引:1
综合运用单轴误差增益补偿和交叉耦合控制技术,以PID交叉耦合控制思想为基础设计一种复合式交叉耦合控制器来直接减小轮廓误差,这种控制器在大误差状态时采用专家控制的基本思想设计5种控制原则迅速减小轮廓误差,以保证快速性;小误差状态时切换到改进型单神经元PID控制器以获得较高的控制精度.仿真结果表明新方法能够有效的提高轮廓加工精度. 相似文献
6.
7.
运用多体系统运动学理论描述了龙门机床结构关系,并建立了该机床几何误差数学模型。分析了模型中包含了各个运动轴的共计34项误差元素。最后,简化了龙门机床几何误差模型,给出了机床几何误差补偿策略。模型的建立和误差补偿策略的提出为机床实施误差补偿提供的基础。 相似文献
8.
数控机床热误差补偿建模综述 总被引:1,自引:4,他引:1
热误差建模技术是决定热误差补偿能否有效进行的关键,对提高数控机床的加工精度至关重要。介绍数控机床热误差建模的国内外研究状况,阐述国内外常用的几种主要的热误差建模方法,即人工智能法、统计分析法、灰色系统法等,探讨各种方法的特点,指出目前研究存在的问题,并展望未来的发展。 相似文献
9.
基于多体系统理论,提出了一种机床热误差综合模型的通用建模方法,以一台双刀摆型国产五坐标数控机床为例,建立了包含50项热误差元素的热误差综合数学模型。基于小误差补偿运动假设,在分析误差运动和补偿运动间关系基础上对热误差综合模型进行空间解耦,建立了可以进行多轴机床热误差补偿量计算的数学模型,为五轴机床热误差实时补偿提供了理论基础。 相似文献
10.
为研究超声复合磨料振动抛光方法对工件表面材料去除量与工件表面粗糙度的影响,分析了超声复合磨料振动抛光方法;并利用ANSYS Workbench软件分别分析了超声振动条件下和超声复合磨料振动条件下工件表面结构与应力变化情况,同时在超声复合磨料振动条件下通过实验验证超声复合磨料振动抛光技术对工件表面材料去除量与工件表面粗糙度的影响程度。结果表明:超声复合磨料振动条件下工件表面位移小于超声振动条件下的工件表面位移,超声复合磨料振动条件下工件表面应力大于超声振动条件下的工件表面应力;在超声复合磨料振动条件下,影响工件表面粗糙度最显著的因素是磨料质量分数,影响工件表面材料去除量最显著的因素是抛光时间,且磨料质量分数为30%、抛光时间为4 h时,抛光效果最佳。 相似文献
11.
加工中心几何误差建模分析与误差补偿策略 总被引:3,自引:0,他引:3
运用齐次坐标变换原理和刚体假设,建立了加工中心从刀点到工作台的总体误差传递矩阵,推导出了通用的加工中心几何误差计算模型;用此模型对TH6350卧式加工中心进行了几何误差计算,并对误差模型进行了校验和分析,提出了基于PC机的加工中心误差补偿策略。 相似文献
12.
对卧式加工中心进行误差补偿是提高其加工精度的重要手段.文章基于多体系统理论,在分析了卧式加工中心误差的特性后,针对该机床建立了综合空间误差模型及刀具姿态误差模型,给出了数控指令的修正算法,并在此基础上开发了误差补偿软件,进行了仿真试验.试验展示了刀具轨迹补偿前后对比及数控指令修正前后的G代码对比.试验结果表明:文中针对卧式加工中心的误差建模正确可行,采用的补偿方法切实有效,通过修正数控指令的方式,跨越了数控系统硬件制约,达到了误差补偿的目的. 相似文献
13.
为提高课题组自研的超精密磨床加工精度,基于多体系统理论,运用齐次坐标变换原理,分析该超精密磨床37项几何误差来源,对非球面超精密磨削的综合误差建模。超精密磨床的多项几何误差元素已在制造阶段标定、补偿,取砂轮对刀误差和砂轮轮廓半径磨损误差作为主要面形误差来源,分别推导其对综合误差的传递函数,分析误差辨识方法,建立误差修正补偿模型,提出基于直接补偿的点补修正法。试验结果表明:建立的综合误差模型正确,根据误差辨识方法和修正补偿模型,修正误差后面形误差显著降低,有效提高面形精度。 相似文献
14.
15.
提出一种可分离数控机床刀具与工件之间可补偿与不可补偿几何误差源的方法;依据可补偿误差项建立误差补偿模型;采用激光干涉仪+直角镜的垂直度直接辨识方法检测出几何误差,导出补偿量计算式,选用西门子840DNC的几何误差补偿模块进行补偿实验,其中8项指标补偿后的几何误差减小比例在16.5%~92%,补偿效果显著。实践证明本文作者所提出的机床可补偿几何误差的建模与补偿方法是有效和可行的,其补偿方法同样可以用于不同类型的机床。 相似文献
16.
《组合机床与自动化加工技术》2017,(4)
为了提高数控机床的加工精度,文章以精密四轴数控平台为研究对象,采用PT100、激光干涉仪等仪器对X、Z轴的温度、定位误差进行测量与分析,研究精密四轴数控平台定位误差与温度之间的变化规律。运用支持向量回归机建立X、Z轴的热误差模型,利用网格搜索法对支持向量回归机热误差模型进行参数寻优,确定惩罚参数c和核函数参数g的最优参数值。在热平衡状态下,根据BP神经网络、支持向量回归机热误差模型分别计算出X、Z轴定位误差的预测值与测量值对比曲线,对比曲线和数据分析表明支持向量回归机的预测精度较高,其X、Z轴拟合偏差带宽均不超过0.6μm。依据支持向量回归机热误差模型的预测数据进行补偿实验,数控平台X轴的定位误差降低了89.55%,Z轴定位误差降低了85.67%。实验结果证明支持向量回归机建模方法具有较高的预测精度、泛化能力、补偿精度和鲁棒性。 相似文献
17.
18.
19.
建立精确的误差模型,并对机床进行误差补偿是提高机床加工精度的有效方法。文章以自主研发的五轴机床为研究对象,测量在不同温度状态下导轨的定位误差,通过分析实测数据,得到机床误差分布规律和影响定位误差的关键因素。根据几何误差与热误差的不同特性进行误差分离,分别建立几何和热误差数学模型,最后叠加得到综合误差数学模型。根据综合误差模型,提出机床误差补偿策略,为多轴数控机床实施误差补偿提供基础。 相似文献