首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this study, an optimization method is proposed to enhance the gas–liquid mass transfer in bubble column reactor based on the entropy generation extremum principle. The mass transfer–induced entropy generation can be maximized with the increase of mass transfer rate, based on which the velocity field can be optimized. The oxygen gas–liquid mass transfer is the major rate–limiting step of the toluene emissions biodegradation process in bubble column reactor, so the entropy generation due to oxy...  相似文献   

2.
An exploration of the gas CO2 absorbed into liquid ethanol accompanied with Rayleigh convection is performed by analyzing the mass entransy dissipation; this new statistical quantity is introduced to describe the irreversibility of mass transfer potential capacity. Based on the general advection–diffusion differential equation for an unsteady mass transfer process, the variation of the included angle between the velocity vector and concentration gradient fields is investigated to reveal the underlying mechanism of interfacial convection enhancing mass transfer. Results show some identical characteristics with the qualitative analyses of the synergy effects generated by the concentration and velocity fields after interfacial convection occurring for a boundary condition of fixed surface concentration. And the equivalent mass resistance for convective mass transfer process presents the similar variation with the reciprocal of instantaneous mass transfer coefficient. Accordingly, it is reasonable to be seen that mass transfer dissipation rate could be provided to assess the convection strength and explain fundamentally how Rayleigh convection improves mass transfer performance through establishing a close relationship between the mass transfer capacity and field synergy principle from the view of mass transfer theory.  相似文献   

3.
This paper studies the mass transfer performance of structured packings in the absorption of CO2 from air with aqueous NaOH solution. The Eight structured packings tested are sheet metal ones with corrugations of different geometry parameters. Effective mass transfer area and overall gas phase mass transfer coefficient have been measured in an absorption column of 200 mm diameter under the conditions of gas F-factor in 0.38–1.52 Pa0.5 and aqueous NaOH solution concentration of 0.10–0.15 kmol·m?3. The effects of gas/liquid phase flow rates and packing geometry parameters are also investigated. The results show that the effective mass transfer area changes not only with packing geometry parameters and liquid load, but also with gas F-factor. A new effective mass transfer area correlation on the gas F-factor and the liquid load was proposed, which is found to fit experiment data very well.  相似文献   

4.
Recovery of carbon monoxide from flue gases by selective absorption of carbon monoxide in an imidazolium chlorocuprate(I) ionic liquid is considered in this work as an alternative to the use of molecular volatile solvents such as aromatic hydrocarbons. The present work evaluates the CO mass transfer rates from the gas phase to the ionic liquid solutions in the absence of chemical reaction. To that end, carbon dioxide was employed as an inert model gas and absorption experiments were performed to assess the influence of different process variables in a batch reactor with flat gas–liquid interface. The experimental mass transfer coefficients showed significant var-iation with temperature, (3.4–10.9) × 10-7 m·s-1 between 293 and 313 K; stirring speed, (10.2–33.1) × 10-7 m·s-1 between 100 and 300 r·min-1;and concentration of copper(I), (6.6–10.2) × 10-7 m·s-1 between 0.25 and 2 mol·L-1. In addition, the mass transfer coefficients were eventually found to follow a poten-tial proportionality of the type kL∝μ-0.5 and the dimensionless correlation that makes the estimation of the mass transfer coefficients possible in the studied range of process variables was obtained:Sh=10-2.64·Re1.07·Sc0.75. These results constitute the first step in the kinetic analysis of the reaction between CO and imidazolium chlorocuprate(I) ionic liquid that determines the design of the separation units.  相似文献   

5.
Freeze-drying of the initially porous frozen material with pre-built pores from liquid material was found experimentally to save drying time by over 30% with an initial saturation being 0.28 compared with the conventional operation with the initial saturation being 1, using mannitol as the solid material. In order to understand the mass and heat transfer phenomena of this novel process, a two-dimensional mathematical model of coupled mass and heat transfer was derived with reference to the cylindrical coordinate system. Three adsorption–desorption equilibrium relationships between the vapour pressure and saturation value namely, power-law, Redhead's style and Kelvin's style equation, were tested. Kelvin's style in exponential form of adsorption equilibrium relation gave an excellent agreement between the model prediction and experimental measurement when the equation parameter, γ, of 5000 was applied. Analyses of temperature and ice saturation profiles show that additional heat needs to be supplied to increase the sample temperature in order to promote the desorption process. Simulation also shows that there is a threshold initial porosity after which the drying time decreased with the increase in the initial porosity. Enhanced freeze-drying is expected to be achieved by simultaneously enhancing mass and heat transfer of the process.  相似文献   

6.
It has long been found that the flow pattern of the liquid phase on distillation tray is of great importance on distillation process performance. But until now, there was very few published work on quantitative investigation of this subject. By combining the computational fluid dynamics (CFD) with the mass transfer equation, a theoretical model is proposed for predicting the details of velocity and concentration distributions as well as the tray efficiency of distillation tray column. Using the proposed model, four different cases corresponding to different assumptions of liquid and vapor flowing condition for a distillation tray column were investigated. In Case I, the distributions of velocity and concentration of the incoming liquid from the downcomer and the uprising vapor from the underneath tray spacing are uniform. In Case Ⅱ, the distribution of the incoming liquid is non-uniform but the uprising vapor is uniform. In Case Ⅲ, the distribution of the incoming liquid is uniform but the uprising vapor is non-uniform.In Case IV, the distributions of both the incoming liquid and the uprising vapor are non-uniform. The details of velocity and concentration distributions on a multiple sieve tray distillation column in four different cases were simulated using the proposed model. It is found that the shape of the simulated concentration profiles of vapor and the liquid is quite different from case to case. The computed results also show that the tray efficiency is highly reduced by the maldistribution of velocity and concentration of the incoming liquid and uprising vapor. The tray efficiency for Case Ⅰ is higher than Case Ⅱ or Case Ⅲ, and that for Case Ⅳis the lowest. It also reveals that the accumulated effect of maldistribution becomes more pronounced when the number of column trays increased. The present study demonstrates that the use of computational method to predict the mass transfer efficiency for the tray column, especially for the large one, is feasible.  相似文献   

7.
By using a hybrid lattice-Boltzmann–finite-difference method (hybrid LBM–FDM method), three-dimensional simulations of solutal interfacial convection were conducted for the process of CO2 absorption into ethanol. A self-renewal interface model is adopted as an interfacial perturbation model. The simulation results revealed some three-dimensional features of the induced interfacial convection, such as the development of diverging cellular flow and Rayleigh plume-like convection in liquid phase. The concentration distribution of the simulation result is validated and found to be in wel agreement with the Schlieren visualization results qualitatively. Addi-tionally, the mass transfer enhancements by interfacial convection were investigated via both simulation and experiment for the absorption process, and the mass transfer is shown to be enhanced by the interfacial convec-tion by about two-fold comparing with that by diffusion.  相似文献   

8.
Bubble/Slurry bubble column reactors(BCR/SBCR) are intensively used as multiphase reactors for a wide range of application in the chemical, biochemical and petrochemical industries. Most of these applications involve complicate gas–liquid/gas–liquid–solid flow behavior and exothermic process, thus it is necessary to equip the BCR/SBCR with heat exchanger tubes to remove the heat and govern the performance of the reactor. Amounts of experimental and numerical studies have been carried out to describe the phenomena taking place in BCR/SBCRs with heat exchanger tubes. Unfortunately, little effort has been put on reviewing the experiments and simulations for examining the effect of internals on the performance and hydrodynamics of BCR/SBCR. The objective of this work is to give a state-of-the-art review of the literature on the effects of heat exchanger tubes with different types and configurations on flow behavior and heat/mass transfer, then provide adequate information and scientific basis for the design and the development of heat exchanger tubes in BCR/SBCR, ultimately provide reasonable suggestions for better comprehend the performance of different heat exchanger tubes on hydrodynamics.  相似文献   

9.
A three-dimensional numerical model is presented for studying the convection-condensation of mixture with vapor in a tube with edgefold-twisted-tape inserts under transition flow.According to the diffusion layer theory and laminar species transport,a condensation model with user defined function is proposed and compared with heat and mass transfer analogy and experimental test.With the condensation model,the influences of gap width and op-erating parameters on thermal-hydrodynamics performance are simulated.As the gap width increases,convection and condensation heat transfer increase initially and then decrease,while convection heat transfer increases sharply and then decreases slightly.Increasing vapor fraction has a significant effect on condensation heat transfer but it has little effect on convective heat transfer.With the increase of inner wall temperature both convection and condensa-tion heat transfer all decrease and the ratio of condensation to total heat decrease dramatically.Increases inlet tem-perature mainly affects convection heat transfer.  相似文献   

10.
Rotating packed bed(RPB) is one of the most effective gas–liquid mass transfer enhancement reactors, its effective specific mass transfer area(ae) is critical to understand the mass transfer process. By using the NaOH–CO2 chemical absorption method, the aevalues of three RPB reactors with different rotor sizes were measured under different operation conditions. The results showed that the high gravity factor and liquid flow rate were major affecting factors, while the gas flow rate ex...  相似文献   

11.
张俊霞  王立  李运刚  黄建 《化工学报》2011,62(10):2733-2739
界面剪切力对小径管中的蒸汽垂直下流凝结传热有重要影响.采用VOF模型数值模拟了蒸汽垂直下流凝结传热,分析了界面剪切力对局部凝结传热系数的影响.模拟中冷凝管壁面温度采用耦合计算冷却水的对流换热获得.计算得到了速度、界面剪切力和局部凝结传热系数的分布.计算结果表明:界面剪切力沿蒸汽流动方向逐渐减小,它对局部凝结传热系数的强...  相似文献   

12.
对采用淤浆聚合法聚合生成超高相对分子质量聚乙烯过程中的传质过程进行了研究,考察了压力、温度对平衡溶解度的影响以及搅拌速率和物料对传质系数KL的影响规律。结果表明:乙烯溶解度随气相中乙烯压力的升高而线性增加,气液平衡关系符合亨利定律;温度升高,气体溶解度减小;搅拌速率增大,相应的传质系数线性增大;加入聚乙烯颗粒会使吸收速率降低,物料量与传质系数基本呈反比例关系。  相似文献   

13.
秦建华 《广东化工》2010,37(3):38-39
反应精馏是为增强反应与精馏效果而将两种单元操作进行耦合的多功能新技术。因既有化学反应又有精馏过程,反应精馏过程需考虑气液相平衡、气液质量传递、催化剂内扩散(非均相反应精馏)以及动力学等因素的相互作用,导致该过程存在定态多重性、动力学复杂性。文章系统地综述了近年来国内外科研工作者对反应精馏实验和理论的研究进展,分析了反应精馏技术工业应用中存在的关键问题,并对未来的发展方向进行了展望。  相似文献   

14.
采用直接分析法测定了甲基丙烯醛(MAL)的气液相平衡数据,并以此为基础数据对甲基丙烯醛吸收塔进行了改造,优化了工艺操作条件,改善了气液两相传质效果,甲基丙烯醛吸收效率明显提高。  相似文献   

15.
Theoretically substantiated expressions are suggested for estimating the tray efficiency in distillation with nonequimolar mass transfer. Binary interaction parameters are presented for the UNIQUAC calculation of the vapor-liquid equilibrium in the six-component system consisting of water, methanol, ammonia, monomethylamine, dimethylamine, and trimethylamine. An approach to simulating the operation of tray columns with nonequimolar mass transfer is proposed.  相似文献   

16.
The reactive dividing-wall column (RDWC) presents a highly integrated process that enables significant reductions in investment costs and energy consumption. However, the high degree of integration of this apparatus causes numerous interactions between kinetics, vapor-liquid equilibrium, and mass transfer. To ensure a reliable operation of the RDWC, suitable control schemes need to be developed and experimentally validated. A decentralized control scheme for the RDWC is presented and for the first time experimentally investigated on an RDWC pilot plant. A comparison of experimental and simulated data is carried out and shows good agreement.  相似文献   

17.
汽液液三相精馏全塔效率模型及分析   总被引:4,自引:0,他引:4  
在探讨汽液两相精馏塔板效率模型及影响因素的基础上,在Oldershaw精馏塔内,对影响汽液液三相 精馏全塔效率的各种因素进行了深入研究,建立了基于泡沫工况下的汽液液三相精馏全塔效率模型,通过对实 测数据的关联,获得了上述模型参数。  相似文献   

18.
陈光  闫孝红 《化工学报》2020,71(z2):62-69
提出了一种基于VOF(volume of fluid)方法的相变模型,用于计算气液相变过程的控制方程中的传热传质源项。在单位时间步长上相界面附近发生的传热以瞬态热扩散来考虑,并假设该传热导致了相变的发生。相变模型能够通过相界面单元的温度、流体热物性以及时间步长来计算传热传质源项。通过一维Stefan问题和二维水平膜沸腾问题对该相变模型进行验证,对比了相界面位置以及温度分布,结果与理论解吻合良好。进一步探讨了相变模型中的时间步长对计算精度的影响。结果表明时间步长越小,本相变模型模拟得到的结果与理论解的偏差越小。  相似文献   

19.
介绍了国内外气液分离技术及设备的研究进展,阐述了重力分离、惯性分离、过滤分离、离心分离和精馏分离的工作原理和设备构成,重点关注了气液分离技术在换热器和制冷系统中的应用,最后对比了各种气液分离技术。现有气液分离机理尚不清晰,且普适性不高。将气液分离与气相相变传热过程结合能实现强化传热和提升系统能效,具有巨大应用前景。  相似文献   

20.
In this work,a molecular-level kinetic model was built to simulate the vacuum residue (VR) coking pro-cess in a semi-batch laboratory-scale reaction kettle.A series of reaction rules for heavy oil coking were summarized and formulated based on the free radical reaction mechanism.Then,a large-scale molecular-level reaction network was automatically generated by applying the reaction rules on the vacuum residue molecules.In order to accurately describe the physical change of each molecule in the reactor,we cou-pled the molecular-level kinetic model with a vapor-liquid phase separation model.The vapor-liquid phase separation model adopted the Peng-Robinson equation of state to calculate vapor-liquid equilib-rium.A separation efficiency coefficient was introduced to represent the mass transfer during the phase separation.We used six sets of experimental data under various reaction conditions to regress the model parameters.The tuned model showed that there was an excellent agreement between the calculated val-ues and experimental data.Moreover,we investigated the effect of reaction temperature and reaction time on the product yields.After a comprehensive evaluation of the reaction temperature and reaction time,the optimal reaction condition for the vacuum residue coking was also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号