首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
快速变压吸附制氢工艺的模拟与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
目前工业上主要通过变压吸附技术从蒸汽甲烷重整气中制取氢产品气。然而,能源需求量的快速增加使得传统变压吸附技术在产量方面的不足越发明显。为此,进行了快速变压吸附从蒸汽甲烷重整气中制取氢气的模拟研究。采用活性炭和5A分子筛作为吸附剂,并以测得的原料气中各组分在两种吸附剂上的吸附数据为基础,进行了六塔快速变压吸附工艺的数值模拟与分析。在分析了塔内温度、压力和固相的浓度分布后,探究了进料流量、双层吸附剂高度比以及冲洗进料比三个操作参数对于快速变压吸附工艺性能的影响,结果表明:原料气组成为H2/CH4/CO/CO2=76%/3.5%/0.5%/20%,吸附压力为22 bar(1 bar=105 Pa),解吸吹扫压力为1.0 bar,处理量为0.8875 mol·s-1,吸附剂床层高度比为0.5∶0.5,冲洗进料比为22.37%时,可获得H2纯度99.90%,回收率69.88%,此时H2产量为0.4713 mol·s-1。相比之下,氢气纯度为99.90%时,尽管PSA工艺回收率为83.40%,但处理量只有0.39 mol·s-1,因此H2产量仅为0.2472 mol·s-1。  相似文献   

2.
用于PEMFC的天然气水蒸气制氢系统   总被引:1,自引:0,他引:1       下载免费PDF全文
代磊  李明  胡鸣若 《化工学报》2009,60(Z1):90-94
针对质子交换膜燃料电池(PEMFC)的应用要求,开发了一个包括天然气水蒸气重整、CO变换和变压吸附净化的制氢工艺过程,并着重对重整反应和变压吸附的操作条件进行了实验研究。考察了温度、空速和水碳比对重整反应的影响,得到适宜的工艺操作条件,实验结果表明:温度650℃、水碳比6、空速42h-1时,氢气含量为70.21%,甲烷转化率为77.41%;分析了温度、流速对变压吸附脱除CO效果的影响,结果表明:在0.2MPa、40℃和吸附、脱附时间120s的条件下,产品气中CO浓度接近于1×10-6,经过多次循环后产品气质量稳定,可以连续获得满足80W质子交换膜燃料电池要求的高纯度氢气。  相似文献   

3.
《分离科学与技术》2012,47(13):3013-3044
Abstract

Reformed gas made by the steam methane reforming(SMR) process is used as fuel feed to MCFC, but it is not as good as pure hydrogen due to the presence of CO2 and CO. The sorption-enhanced steam methane reforming(SE-SMR) process can reduce CO2 and CO to a low level and produce high purity hydrogen. Considering the merits of similar operating temperatures (about 500°C) and carbon dioxide recycle, a novel concept of a six-step sorption-enhanced steam methane reforming (SE-SMR) combined with electricity generation by molten carbonate fuel cell (MCFC) is proposed. In the present paper, a cycle of the SE-SMR process, which include the steps of reaction/adsorption, depressurization, gas purges (nitrogen and reformed gas, respectively), and pressurization with reformed gas, is modeled and analyzed. The process stream in the SE-SMR process is used as anode feed in MCFC. According to the result of numerical simulation, a fuel cell grade hydrogen product (above 80% purity) at the SE-SMR temperature of 450°C can be obtained. A carbon dioxide recycle mechanism is developed for cathode feed of MCFC from flue gas by burning with excess air to achieve a proper CO2/air ratio (about 30:70). The novel electricity generation system, which can operate at lower energy consumption and high purity hydrogen feed is helpful for the MCFC'S performance and life time.  相似文献   

4.
Mathematical modeling of the methane-combined reforming process (steam methane reforming–dry reforming methane) was performed in a fluidized bed membrane reactor. The model characterizes multiple phases and regions considering low-density phase, high-density phase, membrane, and free board regions that allow study of reactor performance. It is demonstrated that the combined effect of membrane and reaction coupling provides opportunities to overcome equilibrium limits and helps to achieve higher conversion. Additionally, the influence of key parameters on reactor performance including reactor temperature, reactor pressure, steam to methane feed ratio (S/C), and carbon dioxide to methane feed ratio (CO2/C) were investigated in the multi-objective genetic algorithm to find the optimal operating conditions. Finally, the process of steam reforming was simulated in selected optimal conditions and the results are compared to those of the combined reforming process. Comparison reveals the superiority of the combined reforming process in terms of methane conversion, catalyst activity, and outlet H2/CO ratio in the syngas product in being close to unity.  相似文献   

5.
林文胜  席芳  顾安忠 《化工学报》2015,66(Z2):226-230
煤层气(CBM)是一种非常规天然气。在中国,煤层气在抽采出来时常混有空气。考虑到安全因素,氧气首先应该被去除。之后,煤层气利用的最重要步骤则是甲烷-氮气混合气体的甲烷高效提浓。本文搭建了双床变压吸附(PSA)装置,选择特定的炭分子筛(CMS)进行CH4/N2混合物分离实验研究。由于CMS的动力学吸附特性,氮被吸附在CMS上,带有一定压力的甲烷则连续输出。研究了吸附压力、进气速度和循环周期等因素对吸附过程整体性能的影响。从50% CH4/50% N2的原料气可以获得95.45%纯度的甲烷产品,而从30% CH4/70% N2的原料气可以获得94.89%纯度的甲烷产品。研究表明,以上3个参数都对分离性能有影响,其中后两者的影响更大。在较低吸附压力和较低进气速度时更容易获得纯度90%以上的甲烷产品。另外,循环周期越短,获得的甲烷纯度越高。  相似文献   

6.
Steam reforming of methane over a commercially available, nickel/alumina catalyst was experimentally studied. The reactor employed for the study was made of 7 mm i.d. quartz tube and catalyst particles were 0.84-1 mm in size. The amount of catalyst charge in the reactor was around 0.3 gram. Experiments were carried out varying the steam to methane ratio in the feed gas from 1 to 10 and reaction temperature from 823 to 1073 K. Nitrogen gas was used to control partial pressure of methane and steam. Using Marquardt method reaction rate derived from the experiments was fitted to $$reaction rate = 1,527 exp( - 14,820/RT) P^{1.014} _{CH_4 } P^{ - 0.9577} _{H_2 0} $$ Thus reaction order was close to one for methane and close to minus one for steam, respectively.  相似文献   

7.
Experimental work has been carried out on the mixed reforming reaction, i.e., simultaneous steam and CO2 reforming of methane under a wide range of feed compositions and four different reaction temperatures from 700 °C to 850 °C using a commercial steam reforming catalyst. The experiments were conducted for a CO2/CH4 ratio from 0 to 2 and a steam to methane ratio from 3 to 5. The effect of CO2/CH4 ratio on the exit H2/CO ratio and the conversions of the reactants indicate that the dry reforming reaction is dominant under increased carbon dioxide in the feed. Steam reforming of typical steam hydrogasification product gas consisting of CO, H2 and CO2 in addition to steam and methane has also been investigated. The H2/CO ratio of the product synthesis gas varies from 4.3 to 3.7 and from 4.8 to 4.1 depending on the feed composition and reaction temperature. The CO/CO2 ratios of the synthesis gas varied from 1.9 to 2.9 and 2.0 to 3.3. The results are compared with simulation results obtained through the Aspen Plus process simulation tool. The results demonstrate that a coupled steam hydrogasification and reforming process can generate a synthesis gas with a flexible H2/CO ratio from carbon-containing feedstocks.  相似文献   

8.
针对环氧乙烷生产装置中含乙烯尾气排放造成乙烯资源浪费的问题,提出采用变压吸附回收尾气中乙烯的方法。实验中测定了排放气中各种气体组分在普通活性炭和自制载铜吸附剂(NJ)上的吸附平衡;分别考察了气体组分C2H6、CO2、Ar、CH4、O2对NJ变压吸附混合气中乙烯的影响。实验中还测定了NJ用于工厂实际排放气体中变压吸附乙烯的性能,并初步考察了解吸性能。实验结果表明,除氧气有一定影响外,NJ吸附剂具有稳定的变压吸附特性,能达到环氧乙烷排放气中乙烯回收要求,具有广泛的工业应用前景。  相似文献   

9.
以煤基碳分子筛为沼气净化吸附剂,借助扫描电镜观察了碳分子筛的表面形貌,并通过物理化学吸附仪表征了碳分子筛的孔径分布。基于静态容积法测定了CO2与CH4在碳分子筛的静态吸附量,并估算了CO2与CH4在碳分子筛的动力学扩散系数。单塔穿透实验考察了吸附压力与进料流量对原料气中CO2穿透曲线的影响,选取吸附压力为0.3 MPa,进料流量为4 L·min-1进行两塔六步真空变压吸附提纯沼气的实验研究,并考察了吸附步骤时长与产品气冲洗率对CH4富集效果的影响。实验结果表明,吸附步骤时长为140 s,冲洗率为0.05时,产品气中CH4纯度可达98%,收率可达82%。  相似文献   

10.
田军鹏  沈圆辉  张东辉  唐忠利 《化工学报》2021,72(11):5675-5685
为减少甲烷排放,实现低浓度煤层气有效资源化利用,探究了使用规整复合吸附剂真空变压吸附富集低浓度煤层气的工艺。采用静态容积法测定了甲烷、氮气在规整复合吸附剂上的吸附等温线,同时建立了包括质量、热量和动量守恒在内的严格吸附床数学模型,设计了三塔连续进料的真空变压吸附工艺并进行模拟。分析了工艺达到循环稳态后吸附床层轴向温度分布和压力变化,并且探究了进料量、解吸压力、原料气中甲烷浓度和吸附压力对纯度、回收率、工艺能耗和吸附剂产率等工艺性能的影响。模拟结果表明,在进料量为100 L·min-1,解吸压力为0.1 bar(1 bar=0.1 MPa),原料气甲烷浓度为30%,吸附压力为3 bar时可以生产纯度为59.07%,回收率为93.64%的富CH4产品气,同时单位能耗为18.70 kJ·mol-1,吸附剂产率为4.56 mol·h-1·kg-1。表明规整吸附剂对CH4/N2具有良好的吸附分离效果,能够实现低浓度煤层气中甲烷高效富集。  相似文献   

11.
An experimental and theoretical study is performed for bulk separation of H2/CO2 mixture (70/30 volume %) by PSA process with zeolite 5A, a process widely used commercially in conjunction with the catalytic steam reforming of natural gas or naphtha. For the optimized adsorption conditions of PSA, the characteristics of adsorption/desorption characteristics have been studied through breakthrough and desorption experiments under various conditions. The purge-to-feed ratio is important to the H2 product purity only at a long adsorption step time. H2 could be concentrated from 70% in the feed to 99.99% at H2 recovery of 67.5%. The results of all five steps in PSA are successfully predicted by the LDF model considering an energy balance and nonlinear isotherm. For the model, the effective diffusivities (D,) are obtained separately from the uptake curves of H2 and CO2. The Langmuir-Freundlich isotherm is used to correlate the experimental equilibrium data and is very well fitted to the results.  相似文献   

12.
Hydrogen recovery from Tehran refinery off-gas was studied using simulation of PSA (pressure swing adsorption), gas absorption processes and modeling as well as simulation of polymeric membrane process. Simulation of PSA process resulted in a product with purity of 0.994 and recovery of 0.789. In this process, mole fraction profiles of all components along the adsorption bed were investigated. Furthermore, the effect of adsorption pressure on hydrogen recovery and purity was examined. By simulation of one-stage membrane process using co-current model, a hydrogen purity of 0.983 and recovery of 0.95 were obtained for stage cut of 0.7. Also, flow rates and mole fractions were investigated both in permeate and retentate. Then, effects of pressure ratio and membrane area on product purity and recovery were studied. In the simulation of the gas absorption process, gasoline was used as a solvent and product with hydrogen purity of 0.95 and recovery of 0.942 was obtained. Also, the effects of solvent flow rate, absorption temperature, and pressure on product purity and recovery were studied. Finally, these three processes were compared economically. The results showed that the PSA process with total cost of US$ 1.29 per 1 kg recovered H2 is more economical than the other two processes (feed flow rate of 115.99 kmol/h with H2 purity of 72.4 mol%).  相似文献   

13.
《分离科学与技术》2012,47(5):1023-1044
Abstract

Hydrogen separation by the four-bed PSA process using layered beds of activated carbon and zeolite 5A was investigated experimentally and theoretically to recover high purity H2 from steam methane reforming off-gas. The recovery increased with increasing the residence time at given product purity because of the contact time between the impurities and the adsorbents is increased. The difference of increasing the recovery became smaller with increasing the residence time and then the recovery was not increased after 43.6 seconds of the residence time. The minimum residence time exists to obtain the maximum recovery at desired product purity (99.999%+).  相似文献   

14.
A pilot-scale fluidized-bed membrane reactor was tested for the production of hydrogen. The prototype reactor operated under steam methane reforming (SMR) and autothermal reforming (ATR) conditions, without membranes and with membranes of different total areas. Heat was added either externally or via direct air addition. Hydrogen permeate purity of up to 99.995+% as well as a pure-H2-to-natural-gas yield of 2.07 were achieved with only half of the full complement of membrane panels active under SMR conditions. A permeate-H2-to reactor natural gas feed molar ratio >3 was achieved when all of the membrane panels were installed under SMR conditions. Experimental tests investigated the influence of such parameters as reactor pressure, hydrogen permeate pressure (vacuum vs atmospheric pressure), air top/bottom split, feed flowrate and membrane area. Reactor performance was strongly dependent on the active membrane surface area.  相似文献   

15.
工业氦气主要通过深冷、膜分离和变压吸附(PSA)耦合从天然气提取,其中PSA是获得高纯He的关键。吸附过程模拟可以克服实验局限,有效指导工程设计、优化工艺条件。以体积分数90%的粗He为原料,利用Aspen Adsorption软件建立He/CH4 单塔PSA模型,获得穿透曲线。以此为基础,建立双塔分离流程,分析吸附、顺放、逆放、冲洗、升压步骤中吸附塔内气相组成的变化,五步最佳操作时间分别为 60、180、30、60和180 s。在三塔流程中,一个循环周期的最佳吸附时间和均压时间分别为135 s和90 s,产品纯度可达98.42%,回收率达60.45%。在五塔流程中,考虑到各步骤时间的匹配及生产的连续性,需要对一个周期内的循环时间进行优化。循环时间为300~340 s时,产品纯度达到99.07%以上。  相似文献   

16.
Four different pressure swing adsorption (PSA) cycles using CMS for oxygen purification were developed to produce high-purity oxygen of over 99% with a high level of productivity. The cyclic performances such as purity, recovery, and productivity of the four different PSA cycles were experimentally and theoretically compared under non-isothermal conditions. In addition, one binary (O2/Ar; 95:5 vol%) and two ternary (O2/Ar/N2; 95:4:1 and 90:4:6 vol%) mixtures were used to study the effects of feed composition. The PSA cycles with two consecutive blowdown steps produced oxygen with 98.0-99.9% purity and 56-66% recovery. The PSA cycle with oxygen generation in the second blowdown step produced oxygen with a higher level of purity and productivity. Also, the cycle introducing a pressure equalization step instead of a pure step produced oxygen with about 99.8% purity and 78% recovery. The period for the cyclic steady state of the ternary feed with 1% N2 was slightly longer than that of the binary feed, while the PSA performance of the ternary feed was similar to that of the binary feed without nitrogen. However, in the ternary feed with 6% N2, the purity of the O2 in the purification cycles decreased by up to 97.3%. Therefore, nitrogen played a key role in producing high-purity oxygen in the CMS PSA instead of argon.  相似文献   

17.
This paper presents a performance analysis of a dual-bed autothermal reformer for hydrogen production from methane using a non-isothermal, one dimensional reactor model. The first section of Pt/Al2O3 catalyst is designed for oxidation reaction, whereas the second one based on Ni/MgAl2O4 catalyst involves steam reforming reaction. The simulation results show that the dual-bed autothermal reactor provides higher reactor temperature and methane conversion compared with a conventional fixed-bed reformer. The H2O/CH4 and O2/CH4 feed ratios affect the methane conversion and the H2/CO product ratio. The addition of steam at lower temperatures to the steam reforming section of the dual-bed reactor can produce the synthesis gas with a higher H2/CO product ratio.  相似文献   

18.
Design characteristics and performance of a novel reactor system, termed a hybrid adsorbent-membrane reactor (HAMR), have been investigated for hydrogen production. The recently proposed HAMR concept couples reactions and membrane separation steps with adsorption on the membrane feed-side or permeate-side. Performance of conventional reactors has been significantly improved by this integrated system. In this paper, an HAMR system has been studied involving a hybrid-type packed-bed catalytic membrane reactor undergoing methane steam reforming through a porous ceramic membrane with a CO2 adsorption system. This HAMR system is of potential interest to pure hydrogen production for fuel cells for various mobile and stationary applications. Reactor behaviors have been investigated for a range of temperature and pressure conditions. The HAMR system shows enhanced methane conversion, hydrogen yield, and product purity, and provides good promise for reducing the hostile operating conditions of conventional reformers, and for meeting the product purity requirements.  相似文献   

19.
《分离科学与技术》2012,47(9):845-864
Abstract

Binary mixtures can be separated into two high-purity products by a new pressure swing adsorption (PSA) cycle. The product purity depends on the purge/feed ratio of the respective gases in the PSA cycle. The process characteristics of the new PSA cycle, using activated carbon as the sorbent, can be adequately predicted by an equilibrium model.  相似文献   

20.
The separation of methane (CH4) and nitrogen (N2) is a significant challenge to the enrichment and utilization of low concentration CH4 due to the similarity in the physical and chemical properties of the two molecules. In this work, we investigated the separation of CH4 from N2 using 100 kg of a new ionic liquidic zeolite (ILZ) material in a 6-bed pilot-scale pressure swing adsorption process. Feed gases with CH4 concentrations of 5.0% and 16.1% were upgraded to 11.5% and 34.6%, respectively, with CH4 recoveries higher than 80%. The pilot test results were used to anchor a numerical model that then allowed the efficient investigation of multiple operational parameters including desorption pressure and feed gas flow rates. The numerical model produced CH4 concentrations for both product streams consistent with those measured in the pilot experiments, with root mean square deviations below 2%. The modeling results revealed that sufficiently low desorption pressures can unexpectedly lead to lower heavy product purities under limited feed gas flow conditions. Furthermore, the optimum feed gas flow rate under which maximum heavy product purity is achieved increases with lower desorption pressure. The maximum CH4 concentrations increased from 31.8% to 41.5%, as desorption pressures decreased from 22.8 to 12.2 kPa for optimum feed flow rates between 78.2 and 105.5 mol/h. We also demonstrate a method of process optimization based on the bed capacity ratio, ℂ, which provides a scale-independent measure of the degree to which the column is being used effectively. By varying feed flow rate and/or desorption pressure, ℂ values between 0.2 and 0.8 were explored, with maxima in the combined separation performance metric (methane recovery) × (methane purity) occurring for values of ℂ in the range 0.29–0.36. This separation performance optimization by adjusting ℂ provides an effective strategy for integrating and understanding the impact of multiple operating parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号