首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A system for the conversion of kinetic energy of wind into thermal energy has been developed which can replace relatively expensive electro‐mechanical equipment. The system consists of a vertical axis wind turbine (VAWT) which is coupled with the shaft of a stirred vessel. In the present work, computational fluid dynamic (CFD) simulations have been performed for the flow generated in a stirred tank with disc turbine (DT). The predicted values of the mean axial, radial and tangential velocities along with the turbulent kinetic energy have been compared with those measured by laser Doppler anemometry (LDA). Good agreement was found between the CFD simulations and experimental results. Such a validated model was employed for the optimisation of drag‐based VAWT. An attempt has been made to increase the efficiency of turbine by optimising the shape and the number of blades. For this purpose, the combination of CFD and experiments has been used. The flows generated in a stirred tank and that generated by a wind turbine were simulated using commercial CFD software Fluent 6.2. A comparison has been made between the different configurations of wind turbines. Results show that a provision in blade twist enhances the efficiency of wind turbine. Also, a wind turbine with two blades has higher efficiency than the turbine with three blades. Based on the detailed CFD simulations, it is proposed that two bladed turbine with 30° twist shows maximum efficiency. © 2011 Canadian Society for Chemical Engineering  相似文献   

2.
Energy consumption of the fluid machinery network in a circulating water system takes up a large part of energy consumption in the process industry, so optimization on the network will enhance the economic and environmental performance of the industry. In this paper, a synthesis approach is proposed to obtain the optimal network structure. The effective height curves are used as tools to perform energy analysis, so that the potential placement of water turbines and auxiliary pumps can be determined with energy benefit. Then economic optimization is carried out, by the mathematical model with the total cost as the objective function, to identify the branches for water turbines and auxiliary pumps with economic benefit. In this way, the optimal fluid machinery network structure can be obtained. The results of case study indicate that the proposed synthesis approach to optimize the fluid machinery network will obtain more remarkable benefits on economy, compared to optimizing only the water turbine network or pump network. The results under different flowrates of circulating water reveal that using a water turbine to recover power or adding an auxiliary pump to save energy in branches are only suitable to the flowrate in a certain range.  相似文献   

3.
The present paper describes an experimental study using a multilayer paint technique to illustrate the wear patterns developed on an eight‐bladed disc turbine in a gas/liquid/solids three‐phase mixing tank. A distinctive wear pattern was found to develop on the low‐pressure side of the blades. The patterns were found to be caused by the two intersecting vortices that developed along the blades. Several modifications were made to the impeller geometry to reduce wear. A new impeller design, which experienced a lower wear rate and showed an improved off‐bottom solids suspension performance, is recommended for operating in gas/liquid/solids reactors.  相似文献   

4.
Distributed power generation and cogeneration is an attractive way toward a more rational conversion of fuel and biofuel. The fuel cell‐gas turbine hybrid cycles are emerging as the most promising candidates to achieve distributed generation with comparable or higher efficiency than large‐scale power plants. The present contribution is devoted to the design and optimization of an innovative solid oxide fuel cell–gas turbine hybrid cycle for distributed generation at small power scale, typical of residential building applications. A 5 kW planar SOFC module, operating at atmospheric pressure, is integrated with a micro gas turbine unit, including two radial turbines and one radial compressor, based on an inverted Brayton cycle. A thermodynamic optimization approach, coupled with system energy integration, is applied to evaluate several design options. The optimization results indicate the existence of optimal designs achieving exergy efficiency higher than 65%. Sensitivity analyses on the more influential parameters are carried out. The heat exchanger network design is performed for an optimal configuration and a complete system layout is proposed. An example of hybrid system integration in a common residential building is discussed.  相似文献   

5.
New open impellers developed for viscous mixing applications were characterized experimentally in terms of power consumption and mixing times, and their performance was compared to that of standard turbines. Their design is based on a nonsymmetry of revolution principle contrary to standard impellers. A color‐discoloration technique based on a fast acid‐base indicator reaction and image analysis were used to evaluate the mixing efficiency. Experimental results show that the segregated, torus‐shaped regions, always observed above and below standard turbine impellers, can be significantly reduced using the new turbine designs generating a well‐balanced axial‐radial flow field.  相似文献   

6.
杨光  王沫然 《化工学报》2020,71(11):5188-5199
使用生物可降解塑料是解决白色污染的有效手段,然而在生物反应器中生产可降解塑料过程中会面临气体传质能力不足和能耗过大等问题,导致生产成本居高不下。为解决这些问题,提出了一种共轴反转型机械搅拌式生物反应器,并通过数值模拟对新型反应器内两相流场进行了仿真及定量分析。通过模拟气泡羽流、鼓泡塔及搅拌器系统内流场,并与实验结果对比,在双流体模型中引入了曳力、升力及湍流扩散力以及基于Troshko-Hassan模型的两相湍流模型,验证了双流体模型在该问题中的有效性。对新设计的反应器内流场模拟结果表明,两相作用力模型对模拟准确性影响较大,而共轴反转能够在流场中形成更好的剪切效应,增强气体分散能力,从而提高整体气含率及相对功率准数。  相似文献   

7.
In this paper, we developed a hybrid model for the steam turbines of a utility system, which combines an improved neural network model with the thermodynamic model. Then, a nonlinear programming (NLP) model of the steam turbine network is formulated by utilizing the developed steam turbine models to minimize the total steam cost for the whole steam turbine network. Finally, this model is applied to optimize the steam turbine network of an ethylene plant. The obtained results demonstrate that this hybrid model can accurately estimate and evaluate the performance of steam turbines, and the significant cost savings can be made by optimizing the steam turbine network operation at no capital cost.  相似文献   

8.
9.
Effect of blade number on the structure of the trailing vortex around the Rushton turbine impeller is examined by analyzing the data of mean velocities, deformation rates, turbulent kinetic energy and energy dissipation rates for 2-, 4-, 6- and 8-straight blades disk turbine impellers in a baffled standard geometry stirred tank. The data of Sauter mean bubble diameter near the blade tip are combined with the turbulent characteristics around the vortex to discuss how the blade number and the strength of the vortex affect the performance of the gas dispersion around the Rushton turbines under a low gassing rate. The results of this analysis show that if power input per each blade is the same, the impeller having four blades not only has the strongest average mean deformation rates and the largest turbulent kinetic energy, but also disperses the smallest average bubbles under the same gassing rate.  相似文献   

10.
The purchased power required for operation of reverse osmosis systems can be greatly reduced or sometimes eliminated by reclaiming waste heat from diesel engines, gas turbines, flare gases, etc. This can be accomplished by using a Biphase turbine to convert low level waste heat to shaft horsepower.The system can be designed to use waste heat from existing installations or to reduce the size of the generating equipment in new supplies.The Biphase conservation turbine is driven by a two phase stream generated by flashing a superheated liquid through a nozzle to the turbine. The turbine can be directly coupled to a pump shaft, to an electrical generator or to a combination of the two. Performance of the turbine is discussed. The waste heat recovery turbine and a hydraulic turbine to recover energy from the high pressure concentrated brine can be combined into one system.This paper describes the design of a seawater reverse osmosis system using waste heat from an existing diesel generating unit. The SeaRO system is designed to produce 750 cmd of 400 ppm water at an energy consumption of approximately 2.5 KWH of purchased power per cubic meter.A discussion of available desalination capacity at various quantities and temperature levels of the waste heat source is presented. A comparison of water costs obtained using this system and a conventional electrical drive is presented.  相似文献   

11.
The mixing literature on hollow blade turbines (HBTS), for operation in fully turbulent flow, is reviewed and compared with the results of our own studies. The SCABA 6SRGT is shown to have an almost identical pumping rate to a disc turbine, when compared at the same diameter and specific power. An equation is proposed for the effect of scale and blade geometry on the power number of a range of concave hollow blade agitators. The “flooding-loading” condition is revisited. It is found that, when compared at conditions above the minimum Froude number required to disperse gas, the HBT designs are as energetically efficient as Rushton turbines for dispersing gas. If we compare them on an “ungassed” power basis, as is the usual literature case, then the HBT is more efficient because of their ability to disperse gas without significant loss of power. The much lower power number resulting from the streamlined blade design of the HBTs also ensures that they achieve the minimum Froude number required to disperse gas at a much lower power than a RT. A simple method to avoid “flooding” for radial turbines, based on this work, is proposed. Under fully loaded conditions the hollow blade turbines will handle high gas rates without significant loss of power and this ability is a function of the degree of streamlining. For the suspension of high levels of solids the D=T/2 hollow blade turbines, at a clearance of T/4, are found to be amongst the most efficient agitators especially under gassed conditions, where almost no effect of gassing on the just suspension speeds were noted.  相似文献   

12.
To reduce the power consumption and improve the mixing performance in stirred tanks, two improved disc turbines namely swept-back parabolic disc turbine (SPDT) and staggered fan-shaped parabolic disc turbine (SFPDT) are developed. After validation of computational fluid dynamics (CFD) model with experimental results, CFD simulations are carried out to study the flow pattern, mean velocity, power consumption, pumping capacity and mixing efficiency of the improved and traditional impellers in a dished-bottom tank under turbulent flow conditions. The results indicate that compared with the commonly used parabolic disc turbine (PDT), the power number of proposed SPDT and SFPDT impellers is reduced by 43% and 12%, and the pumping efficiency is increased by 68% and 13%, respectively. Furthermore, under the same power consumption (0-700 W·m-3), the mixing performance of both SPDT and SFPDT is also superior to that of Rushton turbine and PDT.  相似文献   

13.
Renewable energy sources such as wind energy—together with energy-efficient technologies—are essential to meet global energy demands and address climate change. Fiber-reinforced polymer composites, with their superior structural properties (e.g., high stiffness-to-weight) that allow lightweight and robust designs, play a significant part in the design and manufacture of modern wind turbines, especially turbine blades, for demanding service conditions. However, with the current global growth in onshore/offshore wind farm installations (with total global capacity of ~282 GW by the end of 2012) and trend in wind turbine design (~7–8 MW turbine capacity with ~70–80 m blade length for offshore installations), one of the challenges that the wind energy industry faces with composite turbine blades is the aspect of structural maintenance and repair. Although wind turbines are typically designed for a service life of about 20 years, robust structural maintenance and repair procedures are essential to ensure the structural integrity of wind turbines and prevent catastrophic failures. Wind blades are damaged due to demanding mechanical loads (e.g., static and fatigue), environmental conditions (e.g., temperature and humidity) and also manufacturing defects. If material damage is not extensive, structural repair is the only viable option to restore strength since replacing the entire blade is not cost-effective, especially for larger blades. Composite repairs (e.g., external and scarf patches) can be used to restore damaged laminate/sandwich regions in wind blades. With composite materials in the spar (~30–80 mm thick glass/carbon fiber laminates) and aerodynamic shells (sandwich sections with thin glass fiber skins and thick foam/wood as core), it is important to have reliable and cost-effective structural repair procedures to restore damaged wind blades. However, compared to aerospace bonded repairs, structural repair procedures in wind blades are not as well developed and thus face several challenges. In this regard, the area of composite repair in wind blades is broadly reviewed to provide an overview as well as identify associated challenges.  相似文献   

14.
Liquid phase mixing and power consumption have been studied in 0.3, 0.57, 1.0 and 1.5 m i.d. mechanically agitated contactors. Tap water was used as liquid phase. The impeller speed was varied in the range 2-13.33 r/s. Three types of impellers namely disc turbine (DT), pitched turbine downflow (PTD) and pitched turbine upflow (PTU) were employed. The impeller diameter to vessel diameter ratio was varied in the range of 0.25 to 0.58. The effect of impeller clearance from tank bottom was also studied. Mixing time was measured using the transient conductivity measurement.

The PTD impeller was found to be the most energy efficient for mixing in liquid phase alone. Further, PTD (T/3) was found to be most energy efficient as compared with other impeller diameters. The effect of clearance was found to be design dependent and it was found to be diameter dependent in the case of pitched turbines.

Flow patterns of different impellers have been studied by visual observations (using guide particles). These observations were supported by the measurements using Laser Doppler Velocimetry. A model has been developed for the prediction of mixing time. In the case of all the three impeller designs, a fairly good agreement was found between the predicted and experimental values of mixing time.  相似文献   

15.
ORC系统小型涡轮不同转速下的性能分析   总被引:1,自引:1,他引:0       下载免费PDF全文
夏立军  裴刚  李晶  胡名科  季杰 《化工学报》2014,65(11):4254-4261
目前针对有机朗肯循环(ORC)系统小型涡轮在变工况下运行性能的研究很少,对运行性能随涡轮转速的变化机制缺乏了解.而在可再生能源及余热利用过程中,ORC系统小型涡轮常处于变转速工况.把实验数据和设计数据相结合,针对采用R123为工质的小型径-轴流式高转速涡轮,采用CFX软件对涡轮叶轮三维流场进行了数值模拟.给出了热效率和叶轮等熵效率随转速的变化趋势,指出余速损失是低转速下热效率降低的主要原因.提出了修正后的涡轮能量公式,在低转速工况下对涡轮的做功性能分析时不能忽略涡轮进出口的动能变化,在计算涡轮出口的余速损失时,必须考虑工质流动速度的方向特性.  相似文献   

16.
工业汽轮机的经济出力分界点   总被引:2,自引:2,他引:0       下载免费PDF全文
王卓峰  敦剑  卢红波  耿军  冯霄 《化工学报》2012,63(11):3579-3584
在石化企业蒸汽动力系统中存在大量的减温减压器,将较高压力蒸汽转化为较低压力蒸汽以适用于不同品位热量的需求。此外在夏季企业可能存在低压蒸汽过剩现象。采用背压汽轮机替代减温减压器和凝汽汽轮机回收过剩低压蒸汽能量是节能的有效方法。为了确定采用汽轮机的经济合理的范围,通过经济评价方程,获得了背压汽轮机和凝汽汽轮机的经济出力分界点,并讨论了在不同蒸汽价格或电热比价下该分界点的变化。案例结果表明,该临界值所对应的功率较小,表明在企业多数情况采用汽轮机的节能方案是经济可行的。本文可为在石化企业的节能减排中采用工业汽轮机提供指导和依据。  相似文献   

17.
顾旭波  廖传华  王常青 《化工进展》2022,41(9):5094-5102
超临界水氧化(SCWO)工艺非常适用于高浓度废液的处理。针对目前SCWO处理系统能耗大、能量回用方式单一的问题,介绍了传统工艺流程的能量回收方式,分析了系统能量利用效率,创新性地采用透平和有机朗肯循环(ORC)串联的方式分别对压力能和热能进行回收。利用Aspen Plus建立SCWO系统能量回收模型,研究不同工艺流程对系统能效、(火用)效及输出功率的影响,在此基础上探讨透平的入口温度和出口压力、ORC的蒸发温度对系统性能的影响。结果表明:对反应产物依次进行压力能和热能回收为系统最佳能量回收方式;提高透平的入口温度和出口压力均可提高系统的性能,并同时提高透平输出功率的稳定性;降低ORC的蒸发温度会提高系统蒸汽产量,但同时也减少了可直接利用电能的产生量。  相似文献   

18.
Wind turbine power output is influenced by environmental conditions, including rain. Therefore, a better understanding of the effect of rain on the performance of wind turbines is necessary. Our coupled Lagrangian‐Eulerian multiphase computational fluid dynamics model was modified to more accurately simulate the momentum transfer during water film formation on the airfoils of a horizontal‐axis turbine and the performance loss caused by the rainwater film on the National Renewable Energy Laboratory (NREL) turbine performance. To obtain three‐dimensional numerical simulation of the wind turbine in manageable computational time, simplifying assumptions were made and the validity of these assumptions was verified by simulating the flow over the S809 airfoil of the NREL turbine. In a dry environment, simulation of turbine power output agreed well with NREL experimental data. Our multiphase model showed that the rain film accumulation and flow on the surface of the turbine airfoil reduces the power output of the turbine. © 2017 American Institute of Chemical Engineers AIChE J, 63: 5375–5383, 2017  相似文献   

19.
王永青 《化工学报》2010,61(1):152-158
以注蒸汽燃机-热蒸馏海水淡化复合系统为例,基于火用经济学理论,建立了系统中电、水环境负荷的分摊模型,初步分析了系统的生命周期污染物排放,计算了系统中各火用流以及系统产品的环境负荷向量,得到了电、水的环境负荷分摊比。本文的研究虽然基于注蒸汽燃机-热蒸馏海水淡化系统而进行,但所探讨的方法同样适用于以干式燃机或其他湿式燃机为基础的电水联产系统。  相似文献   

20.
通过对合成氨装置不同工艺部位蒸汽品质和水质的详细分析,初步确定蒸汽透平结垢的主要原因,并采取措施,通过控制透平用蒸汽、自产蒸汽、锅炉给水等各项指标,使四大机组运行情况较往年同比状况良好,达到了蒸汽管网稳定运行的目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号