共查询到18条相似文献,搜索用时 46 毫秒
1.
《计算机科学与探索》2016,(4):543-553
特征选择在传统的单标记问题中已经得到深入的研究,但是大多数传统的特征选择算法却无法用于多标记问题。这是因为多标记问题中的每一个数据样本都同时与多个类标相关联,此时需要设计新的指标来评价特征。并且由于多个类标之间通常存在一定的关联性,在设计特征选择算法时还需要对类标的结构进行建模以利用类标的关联信息。采用谱特征选择(spectral feature selection,SPEC)框架解决上述问题。SPEC所需的相似性矩阵和图结构由样本类标的Jaccard相似性来构建,它能反映类标间的关联性。此外,所提出的方法属于过滤器模型,它独立于分类算法且不需要将多标记问题转化为单标记问题来处理。在现实世界数据集上的实验验证了所提出算法的正确性和较好的性能。 相似文献
2.
已有的多标记特征选择方法主要根据特征与标记之间的依赖度以及特征与特征之间的冗余度确定每个特征的重要度,然后根据重要度进行特征选择,常常忽略标记关系对特征选择的影响。针对上述问题,引入邻域互信息设计了基于标记补充的多标记特征选择算法(Multi-label feature selection algorithm based on label complementarity,MLLC),该算法将依赖度、冗余度以及标记关系作为特征重要度的评价要素,然后基于这3个要素重新设计特征重要度评估函数,使得选取的特征能够获得更佳的分类性能。最后,在6个多标记数据集上验证了MLLC算法的有效性和鲁棒性。 相似文献
3.
在多标记学习中,特征选择是解决多标记数据高维性的有效手段。每个标记对样本的可分性程度不同,这可能会为多标记学习提供一定的信息。基于这一假设,提出了一种基于标记权重的多标记特征选择算法。该算法首先利用样本在整个特征空间的分类间隔对标记进行加权,然后将特征在整个标记集合下对样本的可区分性作为特征权重,以此衡量特征对标记集合的重要性。最后,根据特征权重对特征进行降序排列,从而得到一组新的特征排序。在6个多标记数据集和4个评价指标上的实验结果表明,所提算法优于一些当前流行的多标记特征选择算法。 相似文献
4.
在多标记分类问题中,每个样本可以同时与多个标记类别相关,其中一些标记之间可能具有相关性,充分利用这些标记相关性,可优化分类性能.因此,文中利用标记的频繁项集对标记相关性进行挖掘,提出针对基于邻域粗糙集的多标记属性约简算法进行改进的特征选择算法,并进一步将训练样本根据特征之间的相似性进行聚类,结合局部样本上的标记相关性,进行属性约简及分类.在5个多标记分类数据集上的实验验证文中算法的有效性. 相似文献
5.
特征选择旨在从原始特征空间中选择一组规模较小的特征子集,在分类学习任务中提供与原集合近似或更好的性能.文中提出基于信息粒化的多标记特征选择算法,融合标记权重与样本平均间隔,将改进的邻域信息熵应用到特征选择过程中.在6组数据集以及5个评价指标上的实验表明文中算法在分类上的有效性. 相似文献
6.
多标记特征选择是机器学习和人工智能领域的研究热点之一,现有多标记学习的研究是假设每个示例的标记呈均匀分布,即每个示例的各个相关标记的重要程度相同.然而,在许多应用领域中这些相关标记的重要程度往往不同.为此,本文提出了一种标记增强方法,可将多标记数据中传统的逻辑标记转化为监督信息更丰富的标记分布;同时,从代价敏感学习视角,构造了基于特征代价与特征依赖度的特征重要性度量准则,在此基础上,设计了面向标记分布数据的代价敏感特征选择算法;最后,通过在真实的多标记数据集上的实验对比与分析,验证了算法的有效性和可行性. 相似文献
7.
李雨婷 《计算机技术与发展》2020,(4):46-51
在多标记学习的任务中,多标记学习的每个样本可被多个标签标记,比单标记学习的应用空间更广关注度更高,多标记学习可以利用关联性提高算法的性能.在多标记学习中,传统特征选择算法已不再适用,一方面,传统的特征选择算法可被用于单标记的评估标准.多标记学习使得多个标记被同时优化;而且在多标记学习中关联信息存在于不同标记间.因此,可... 相似文献
8.
特征选择对于分类器的分类精度和泛化性能起重要作用。目前的多标记特征选择算法主要利用最大相关性最小冗余性准则在全部特征集中进行特征选择,没有考虑专家特征,因此多标记特征选择算法的运行时间较长、复杂度较高。实际上,在现实生活中专家依据几个或者多个关键特征就能够直接决定整体的预测方向。如果提取关注这些信息,必将减少特征选择的计算时间,甚至提升分类器性能。基于此,提出一种基于专家特征的条件互信息多标记特征选择算法。首先将专家特征与剩余的特征相联合,再利用条件互信息得出一个与标记集合相关性由强到弱的特征序列,最后通过划分子空间去除冗余性较大的特征。该算法在7个多标记数据集上进行了实验对比,结果表明该算法较其他特征选择算法有一定优势,统计假设检验与稳定性分析进一步证明了所提出算法的有效性和合理性。 相似文献
9.
针对传统特征选择算法无法处理流特征数据、冗余性计算复杂、对实例描述不够准确的问题,提出了基于粗糙集的数据流多标记分布特征选择算法。首先,将在线流特征选择框架引入多标记学习中;其次,用粗糙集中的依赖度替代原有的条件概率,仅仅利用数据自身的信息计算,使得数据流特征选择算法更加高效快捷;最后,由于在现实世界中,每个标记对实例的描述程度并不相同,为更加准确地描述实例,将传统的逻辑标记用标记分布的形式进行刻画。在多组数据集上的实验表明,所提算法能保留与标记空间有着较高相关性的特征,使得分类精度相较于未进行特征选择的有一定程度的提高。 相似文献
10.
在多标记学习框架中,特征选择是解决维数灾难,提高多标记分类器的有效手段。提出了一种融合特征排序的多标记特征选择算法。该算法首先在各标记下进行自适应的粒化样本,以此来构造特征与类别标记之间的邻域互信息。其次,对得到邻域互信息进行排序,使得每个类别标记下均能得到一组特征排序。最后,多个独立的特征排序经过聚类融合成一组新的特征排序。在4个多标记数据集和4个评价指标上的实验结果表明,所提算法优于一些当前流行的多标记降维方法。 相似文献
11.
针对现有多标签特征选择方法存在的两个问题:第一,忽略了学习标签相关性过程中噪声信息的影响;第二,忽略探索每个簇的综合标签信息,提出一种增强学习标签相关性的多标签特征选择方法。首先,对样本进行聚类,并将每个簇中心视为一个综合样本语义信息的代表性实例,同时计算其对应的标签向量,而这些标签向量体现了每个簇包含不同标签的重要程度;其次,通过原始样本和每个簇中心的标签级自表示,既捕获了原始标签空间中的标签相关性,又探索了每一个簇内的标签相关性;最后,对自表示系数矩阵进行稀疏处理,以减少噪声的影响,并将原始样本和每个簇代表性实例分别从特征空间映射到重构标签空间进行特征选择。在9个多标签数据集上的实验结果表明,所提的算法与其他方法相比具有更好的性能。 相似文献
12.
针对传统的基于启发式搜索的多标记特征选择算法时间复杂度高的问题,提出一种简单快速的多标记特征选择(EF-MLFS)方法。首先使用互信息(MI)衡量每个维度的特征与每一维标记之间的相关性,然后将所得相关性相加并排序,最后按照总的相关性大小进行特征选择。将所提方法与六种现有的比较有代表性的多标记特征选择方法作对比,如最大依赖性最小冗余性(MDMR)算法和基于朴素贝叶斯的多标记特征选择(MLNB)方法等。实验结果表明,EF-MLFS方法进行特征选择并分类的结果在平均准确率、覆盖率、海明损失等常见的多标记分类评价指标上均达最优;该方法无需进行全局搜索,因此时间复杂度相较于MDMR、对偶多标记应用(PMU)等方法也有明显降低。 相似文献
13.
多标记特征选择已在图像分类、疾病诊断等领域得到广泛应用;然而,现实中数据的标记空间往往存在部分标记缺失的问题,这破坏了标记间的结构性和关联性,使得学习算法难以准确地选择重要特征。针对此问题,提出一种缺失标记下基于类属属性的多标记特征选择(MFSLML)算法。首先,通过利用稀疏学习方法获取每个类标记的类属属性;同时基于线性回归模型构建类属属性与标记的映射关系,以用于恢复缺失标记;最后,选取7组数据集以及4个评价指标进行实验。实验结果表明:相比基于最大依赖度和最小冗余度的多标记特征选择算法(MDMR)和基于特征交互的多标记特征选择算法(MFML)等一些先进的多标记特征选择算法,MFSLML在平均查准率指标上能够提升4.61~5.5个百分点,由此可见MFSLML具有更优的分类性能。 相似文献
14.
在多标记学习系统中,每个样本同时与多个类别标记相关,却均由一个属性特征向量描述。大部分已有的多标记分类算法采用的共同策略是使用相同的属性特征集合预测所有的类别标记,但它并非最佳选择,原因在于每个标记可能与其自身独有的属性特征相关性最大。针对这一问题,提出了融合标记独有属性特征的k近邻多标记分类算法—IML-kNN。首先对多标记数据的特征向量进行预处理,分别为每类标记构造对该类标记最具有判别能力的属性特征;然后基于得到的属性特征使用改进后的ML-kNN算法进行分类。实验结果表明,IML-kNN算法在yeast和image数据集上的性能明显优于ML-kNN算法以及其他3种常用的多标记分类算法。 相似文献
15.
多标记学习(multi-label learning, MLL)任务处理一个示例对应多个标记的情况,其目标是学习一个从示例到相关标记集合的映射.在MLL中,现有方法一般都是采用均匀标记分布假设,也就是各个相关标记(正标记)对于示例的重要程度都被当作是相等的.然而,对于许多真实世界中的学习问题,不同相关标记的重要程度往往是不同的.为此,标记分布学习将不同标记的重要程度用标记分布来刻画,已经取得很好的效果.但是很多数据中却仅包含简单的逻辑标记而非标记分布.为解决这一问题,可以通过挖掘训练样本中蕴含的标记重要性差异信息,将逻辑标记转化为标记分布,进而通过标记分布学习有效地提升预测精度.上述将原始逻辑标记提升为标记分布的过程,定义为面向标记分布学习的标记增强.首次提出了标记增强这一概念,给出了标记增强的形式化定义,总结了现有的可以用于标记增强的算法,并进行了对比实验.实验结果表明:使用标记增强能够挖掘出数据中隐含的标记重要性差异信息,并有效地提升MLL的效果. 相似文献
16.
在多标记学习框架中,每个对象由一个示例(属性向量)描述,却同时具有多个类别标记.在已有的多标记学习算法中,一种常用的策略是将相同的属性集合应用于所有类别标记的预测中.然而,该策略并不一定是最优选择,原因在于每个标记可能具有其自身独有的特征.基于这个假设,目前已经出现了基于标记的类属属性进行建模的多标记学习算法LIFT.LIFT包含两个步骤:属属性构建与分类模型训练.LIFT首先通过在标记的正类与负类示例上进行聚类分析,构建该标记的类属属性;然后,使用每个标记的类属属性训练对应的二类分类模型.在保留LIFT分类模型训练方法的同时,考察了另外3种多标记类属属性构造机制,从而实现LIFT算法的3种变体——LIFT-MDDM,LIFT-INSDIF以及LIFT-MLF.在12个数据集上进行了两组实验,验证了类属属性对多标记学习系统性能的影响以及LIFT采用的类属属性构造方法的有效性. 相似文献
17.
In this article, we propose a new multi-label enhancement manifold learning algorithm to solve the vehicle video classification problem. Predicting multiple objects in a traffic video image is a challenging problem. Traditional multi-label classification methods can solve the problem of simultaneous detection of multiple labels, but cannot handle high-dimensional streaming video data. Our idea is to use label distribution learning (LDL) to enrich the label space and improve label recognition in the original label space. We use the feature function representing the manifold structure to guide the geometric meaning of the label space and transform the local topology from the feature space to the label space. We first build a label distribution learner. Next, use the LDL model for classification. The similarity between the two distributions is measured by Bayesian divergence, and the label distribution is learned through the maximum entropy model and the objective function of this article is established. Finally, an enhanced label model of the manifold space is established to reduce the dimensionality of the feature matrix generated during the training phase, so that the supervised information in the label manifold can be used in the incremental manifold space to improve the accuracy of feature extraction. Compared to the latest multi-label learning methods, our multi-label enhancement manifold learning method has advantages in predicting performance. 相似文献
18.
在多标记学习中,每个样本都与多个标记关联,关键任务是如何在构建模型时利用标记之间的相关性.多标记深度森林算法尝试在深度集成学习的框架下使用逐层的表示学习来挖掘标记之间的相关性,并利用得到的标记概率表示提升预测精度.然而,一方面标记概率表示与标记信息高度相关,这会导致其多样性较低.随着深度森林的深度增加,性能会下降.另一方面,标记概率的计算需要我们存储所有层数的森林结构并在测试阶段逐一使用,这会造成难以承受的计算和存储开销.针对这些问题,提出基于交互表示的多标记深度森林算法(interactionrepresentation-based multi-label deep forest, iMLDF). iMLDF从森林模型的决策路径中挖掘特征空间中的结构信息,利用随机交互树抽取决策树路径中的特征交互,分别得到特征置信度得分和标记概率分布两种交互表示. iMLDF一方面充分利用模型中的特征结构信息来丰富标记间的相关信息,另一方面通过交互表达式计算所有的表示,从而使得算法无需存储森林结构,大大地提升了计算效率.实验结果表明:在交互表示基础上进行表示学习的i MLDF算法取得了更好的预测性能,... 相似文献