共查询到19条相似文献,搜索用时 62 毫秒
1.
《计算机科学与探索》2016,(4):543-553
特征选择在传统的单标记问题中已经得到深入的研究,但是大多数传统的特征选择算法却无法用于多标记问题。这是因为多标记问题中的每一个数据样本都同时与多个类标相关联,此时需要设计新的指标来评价特征。并且由于多个类标之间通常存在一定的关联性,在设计特征选择算法时还需要对类标的结构进行建模以利用类标的关联信息。采用谱特征选择(spectral feature selection,SPEC)框架解决上述问题。SPEC所需的相似性矩阵和图结构由样本类标的Jaccard相似性来构建,它能反映类标间的关联性。此外,所提出的方法属于过滤器模型,它独立于分类算法且不需要将多标记问题转化为单标记问题来处理。在现实世界数据集上的实验验证了所提出算法的正确性和较好的性能。 相似文献
2.
已有的多标记特征选择方法主要根据特征与标记之间的依赖度以及特征与特征之间的冗余度确定每个特征的重要度,然后根据重要度进行特征选择,常常忽略标记关系对特征选择的影响。针对上述问题,引入邻域互信息设计了基于标记补充的多标记特征选择算法(Multi-label feature selection algorithm based on label complementarity,MLLC),该算法将依赖度、冗余度以及标记关系作为特征重要度的评价要素,然后基于这3个要素重新设计特征重要度评估函数,使得选取的特征能够获得更佳的分类性能。最后,在6个多标记数据集上验证了MLLC算法的有效性和鲁棒性。 相似文献
3.
在多标记学习中,特征选择是解决多标记数据高维性的有效手段。每个标记对样本的可分性程度不同,这可能会为多标记学习提供一定的信息。基于这一假设,提出了一种基于标记权重的多标记特征选择算法。该算法首先利用样本在整个特征空间的分类间隔对标记进行加权,然后将特征在整个标记集合下对样本的可区分性作为特征权重,以此衡量特征对标记集合的重要性。最后,根据特征权重对特征进行降序排列,从而得到一组新的特征排序。在6个多标记数据集和4个评价指标上的实验结果表明,所提算法优于一些当前流行的多标记特征选择算法。 相似文献
4.
在多标记分类问题中,每个样本可以同时与多个标记类别相关,其中一些标记之间可能具有相关性,充分利用这些标记相关性,可优化分类性能.因此,文中利用标记的频繁项集对标记相关性进行挖掘,提出针对基于邻域粗糙集的多标记属性约简算法进行改进的特征选择算法,并进一步将训练样本根据特征之间的相似性进行聚类,结合局部样本上的标记相关性,进行属性约简及分类.在5个多标记分类数据集上的实验验证文中算法的有效性. 相似文献
5.
特征选择旨在从原始特征空间中选择一组规模较小的特征子集,在分类学习任务中提供与原集合近似或更好的性能.文中提出基于信息粒化的多标记特征选择算法,融合标记权重与样本平均间隔,将改进的邻域信息熵应用到特征选择过程中.在6组数据集以及5个评价指标上的实验表明文中算法在分类上的有效性. 相似文献
6.
多标记特征选择是机器学习和人工智能领域的研究热点之一,现有多标记学习的研究是假设每个示例的标记呈均匀分布,即每个示例的各个相关标记的重要程度相同.然而,在许多应用领域中这些相关标记的重要程度往往不同.为此,本文提出了一种标记增强方法,可将多标记数据中传统的逻辑标记转化为监督信息更丰富的标记分布;同时,从代价敏感学习视角... 相似文献
7.
李雨婷 《计算机技术与发展》2020,(4):46-51
在多标记学习的任务中,多标记学习的每个样本可被多个标签标记,比单标记学习的应用空间更广关注度更高,多标记学习可以利用关联性提高算法的性能.在多标记学习中,传统特征选择算法已不再适用,一方面,传统的特征选择算法可被用于单标记的评估标准.多标记学习使得多个标记被同时优化;而且在多标记学习中关联信息存在于不同标记间.因此,可... 相似文献
8.
针对传统特征选择算法无法处理流特征数据、冗余性计算复杂、对实例描述不够准确的问题,提出了基于粗糙集的数据流多标记分布特征选择算法。首先,将在线流特征选择框架引入多标记学习中;其次,用粗糙集中的依赖度替代原有的条件概率,仅仅利用数据自身的信息计算,使得数据流特征选择算法更加高效快捷;最后,由于在现实世界中,每个标记对实例的描述程度并不相同,为更加准确地描述实例,将传统的逻辑标记用标记分布的形式进行刻画。在多组数据集上的实验表明,所提算法能保留与标记空间有着较高相关性的特征,使得分类精度相较于未进行特征选择的有一定程度的提高。 相似文献
9.
特征选择对于分类器的分类精度和泛化性能起重要作用。目前的多标记特征选择算法主要利用最大相关性最小冗余性准则在全部特征集中进行特征选择,没有考虑专家特征,因此多标记特征选择算法的运行时间较长、复杂度较高。实际上,在现实生活中专家依据几个或者多个关键特征就能够直接决定整体的预测方向。如果提取关注这些信息,必将减少特征选择的计算时间,甚至提升分类器性能。基于此,提出一种基于专家特征的条件互信息多标记特征选择算法。首先将专家特征与剩余的特征相联合,再利用条件互信息得出一个与标记集合相关性由强到弱的特征序列,最后通过划分子空间去除冗余性较大的特征。该算法在7个多标记数据集上进行了实验对比,结果表明该算法较其他特征选择算法有一定优势,统计假设检验与稳定性分析进一步证明了所提出算法的有效性和合理性。 相似文献
10.
在多标记学习框架中,特征选择是解决维数灾难,提高多标记分类器的有效手段。提出了一种融合特征排序的多标记特征选择算法。该算法首先在各标记下进行自适应的粒化样本,以此来构造特征与类别标记之间的邻域互信息。其次,对得到邻域互信息进行排序,使得每个类别标记下均能得到一组特征排序。最后,多个独立的特征排序经过聚类融合成一组新的特征排序。在4个多标记数据集和4个评价指标上的实验结果表明,所提算法优于一些当前流行的多标记降维方法。 相似文献
11.
多标记特征选择已在图像分类、疾病诊断等领域得到广泛应用;然而,现实中数据的标记空间往往存在部分标记缺失的问题,这破坏了标记间的结构性和关联性,使得学习算法难以准确地选择重要特征。针对此问题,提出一种缺失标记下基于类属属性的多标记特征选择(MFSLML)算法。首先,通过利用稀疏学习方法获取每个类标记的类属属性;同时基于线性回归模型构建类属属性与标记的映射关系,以用于恢复缺失标记;最后,选取7组数据集以及4个评价指标进行实验。实验结果表明:相比基于最大依赖度和最小冗余度的多标记特征选择算法(MDMR)和基于特征交互的多标记特征选择算法(MFML)等一些先进的多标记特征选择算法,MFSLML在平均查准率指标上能够提升4.61~5.5个百分点,由此可见MFSLML具有更优的分类性能。 相似文献
12.
李娜潘志松施蕾薛胶任义强 《数据采集与处理》2017,32(2):363-374
真实世界的对象具有多义性,具有非单一的多种标记。对于多标记的学习,现阶段的工作虽然能够利用标记间的重用评分分析多标记间的关系,但是尚不能直观挖掘出多标记的关系结构,也不能准确掌握多标记的主从关系以及多标记的重要性排名情况。而非负矩阵分解(Nonnegative matrix factorization,NMF)方法能对有关联的节点进行有效的社团划分,发掘关联节点的潜在关系,因此利用NMF方法对多标记关系进行社团结构分解成为有价值的研究内容。本文提出多标记社团发现算法,有效地对多标记进行挖掘,发现其中的社团结构,得到多标记的社团关系,并且能够对多标记节点的重要程度排序,分析多标记的主从结构,验证多标记关系算法的有效性,挖掘出其中隐藏的价值,这对于多标记的研究具有重要意义。 相似文献
13.
在多标记学习中,由于不同的标记可能会带有自身的一些特性,所以目前已经出现了基于标记类属属性的多标记学习算法LIFT.然而,类属属性的构建可能会增加属性向量的维度,致使属性空间存在冗余信息.为此,借助模糊粗糙集提出了一种能够进行类属属性约简的多标记学习算法FRS-LIFT,其包含4个步骤:类属属性构建、属性维度约简、分类模型训练和未知样本预测.在5个多标记数据集上的实验结果表明,该算法与LIFT算法相比,不仅能够降低类属属性维数,而且在5种多标记评价指标上均具有较好的实验效果. 相似文献
14.
针对现有的多标记迁移学习忽略条件分布而导致泛化能力不足的问题,设计了一种基于联合分布的多标记迁移学习(Multi-label Transfer Learning via Joint Distribution Alignment,J-MLTL).分解原始特征生成特征子空间,在子空间中计算条件分布的权重系数,最小化跨领域数... 相似文献
15.
多标签学习广泛应用于文本分类、标签推荐、主题标注等.最近,基于深度学习技术的多标签学习受到广泛关注,针对如何在多标签学习中有效挖掘并利用高阶标签关系的问题,提出一种基于图卷积网络探究标签高阶关系的模型TMLLGCN.该模型采用GCN的映射函数从数据驱动的标签表示中生成对象分类器挖掘标签高阶关系.首先,采用深度学习方法提... 相似文献
16.
不平衡数据分类是当前机器学习的研究热点,传统分类算法通常基于数据集平衡状态的前提,不能直接应用于不平衡数据的分类学习.针对不平衡数据分类问题,文章提出一种基于特征选择的改进不平衡分类提升算法,从数据集的不同类型属性来权衡对少数类样本的重要性,筛选出对有效预测分类出少数类样本更意义的属性,同时也起到了约减数据维度的目的.然后结合不平衡分类算法使数据达到平衡状态,最后针对原始算法错分样本权值增长过快问题提出新的改进方案,有效抑制权值的增长速度.实验结果表明,该算法能有效提高不平衡数据的分类性能,尤其是少数类的分类性能. 相似文献
17.
由于数据随时间和空间不断更新,很多基于粗糙集的增量方法被提出。然而,动态数据上基于模糊粗糙集的特征选取(也称属性约简)更新的研究较少,特别是连续型动态数据上的增量特征选取。为了解决这个问题,提出适用于连续型数据的基于模糊粗糙集的增量属性约简算法。首先提出模糊粗糙基本概念的增量机制,如模糊正域的增量机制。只有部分示例在已有属性约简上的辨识能力不足,即对于模糊正域来说,存在一个关键示例集。增量约简算法基于已有数据上的约简结果,仅需要更新关键示例集中的示例,而非全部的论域。因而该增量算法在动态数据上能快速获得约简的更新。通过数值对比实验可以看出,增量算法比非增量算法在运行时间上有明显的优势。特别是对于高维数据集,增量算法可以大大地节省计算时间。 相似文献
18.
19.
一类基于信息熵的多标签特征选择算法 总被引:4,自引:0,他引:4
在多标签分类问题中,特征选择是提升多标签分类器性能的一种重要手段.针对目前多标签特征选择算法计算复杂度大和无法给出一个合理的特征子集的问题,提出了一种基于信息熵的多标签特征选择算法.该算法假设特征之间相互独立,使用特征与标签集合之间的信息增益来衡量特征与标签集合之间的重要程度,并据此提出一种信息增益阈值选择方法.首先计算每一个特征与标签集合之间的信息增益,然后使用信息增益阈值选择算法得到一个合理的阈值,最后根据阈值删除不相关的特征,得到一组合理的特征子集.在2个不同分类器和4个多标签数据集上的实验结果表明:特征选择算法能够有效地提升多标签分类器的分类性能. 相似文献