首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
考虑到由蓄电池和超级电容组成的混合储能系统有利于稳定微电网直流母线电压和优化充放电过程,提出了一种基于直流母线电压稳定的混合储能系统充放电控制策略。该控制策略以直流母线电压稳定为控制目标,实现混合储能系统外部功率平衡,结合超级电容的快充能力和蓄电池的续充能力,以超级电容电压和蓄电池的荷电状态为判断条件,实现混合储能系统内部功率平衡。在Matlab/Simulink环境构建孤岛模式下微电网混合储能系统模型,分析了微电网混合储能系统在负荷功率波动时的运行特性,仿真结果验证了该控制策略在稳定直流母线电压同时降低了蓄电池的充放电次数。  相似文献   

2.
直流微电网储能系统自动充放电改进控制策略   总被引:2,自引:0,他引:2  
针对直流微电网中直流微电源输出不稳定造成的网内功率不平衡及直流母线电压大范围波动问题,基于含光伏阵列和储能系统的直流微电网系统,提出了一种储能系统自动充放电改进控制策略。该控制策略将直流母线电压用4个电压临界值分成5个区域,控制系统根据直流母线电压所处区域自动判断储能系统的工作模态和模态切换,实现储能系统在充电、放电及空闲模式间自由切换;同时避免了由于直流母线电压正常波动引起的储能系统充放电频繁切换对蓄电池造成的损害。dSPACE实验验证了该策略的可行性。  相似文献   

3.
基于电压下垂法的直流微电网混合储能系统控制策略   总被引:2,自引:0,他引:2  
以稳定直流母线电压和优化蓄电池工作过程为目的,提出了一种基于电压下垂法的直流微电网混合储能控制策略。该控制策略根据直流母线电压信息,利用超级电容快速补偿母线功率缺额的高频部分;通过蓄电池对超级电容进行能量补充,间接补偿母线功率缺额的低频部分;利用超级电容电压不能突变的特点,实现对蓄电池电流的平滑控制。控制系统以直流母线电压、超级电容电压及蓄电池荷电状态为判断条件,自动切换工作模式。实验表明,该控制策略可自动调节蓄电池和超级电容出力,维持直流母线电压在额定值附近小范围波动,有效地减小了蓄电池充放电次数,延长其使用寿命。  相似文献   

4.
针对直流微电网中微电源功率输出不稳定以及负荷波动导致直流母线电压偏移问题,提出一种含超级电容和蓄电池的混合储能系统充放电控制策略。该控制策略将储能系统分为5种工作模式,控制系统根据直流母线电压值选择混合储能系统的工作模式,实现蓄电池与超级电容在充电、放电及空闲模式间自由切换,从而维持直流母线电压稳定。通过Matlab/Simulink软件搭建系统模型,仿真结果表明,采用该控制策略可使直流母线电压保持在电压偏移允许范围内。  相似文献   

5.
针对传统PI控制光储微电网系统双向DC-DC变换器存在的直流母线电压波动大、充放电有效性差、抗干扰能力弱等问题,设计了一种基于自适应粒子群优化(APSO)的双闭环控制策略。首先,建立双向DC-DC变换器的数学模型。其次,设计了包括电压环线性自抗扰控制(ADRC)、电流环PI控制的双闭环控制系统,并在电压环中加入前馈控制以增强控制系统的鲁棒性。然后,针对自抗扰控制器参数难以整定的问题,提出了一种基于APSO算法的参数优化系统,该算法引入了自适应惯性权重因子,使惯性权重在粒子群迭代过程中可以动态调整以获得更佳的寻优效果。最后,设计一种带罚函数的时间乘以误差绝对值积分(ITAE)指标作为适应度函数,实现了前馈线性自抗扰控制(FF-LADRC)系统控制参数的自主寻优。MATLAB仿真结果表明,所提控制策略能够有效减小直流母线电压波动,提升储能系统的充放电性能,解决了线性自抗扰控制器参数整定问题。  相似文献   

6.
多微源直流微网系统母线电压稳定性是其电能质量的重要指标,也是限制其大规模应用的关键因素之一。针对直流微网母线电压波动较大的问题,提出一种以微型燃气轮机为主协调单元的主从协调控制策略。该控制策略充分利用微型燃气轮机的功率调节作用,在有效减小微网母线电压波动范围、使其输出电压更加稳定的同时,一定程度上减少了蓄电池单元投入数量和充放电次数,减少蓄电池的后期维护成本,并在Matlab/Simulink中分别搭建分级控制、变功率控制以及主从协调控制模型,通过对比仿真分析的方法,验证了文中所提控制策略在稳定电压及减少蓄电池充放电次数等方面存在的优势。  相似文献   

7.
针对直流微电网中光伏发电单元出力的波动性和间歇性造成系统内部功率不平衡的问题,混合储能系统可以同时发挥蓄电池高能量密度和超级电容高功率密度的优势,根据直流母线电压进行混合储能单元间的协调控制策略。该策略将直流母线电压进行分层控制,采用四个电压阈值共分成五个控制区域,以直流母线电压为信息载体,决定储能系统的运行状态,实现对混合储能单元的充电、放电模式间自主切换。电压分层控制有效地避免了蓄电池由于电压波动而频繁进行充放电切换,从而延长了电池的使用寿命。最后,MATLAB/Simulink的仿真结果验证了所提控制策略的可行性。  相似文献   

8.
超级电容-蓄电池混合储能系统同时具有能量密度高和功率密度高的特点,适用于平抑含有大量分布式能源接入的低压直流配电网的电压波动。提出了一种基于混合储能的母线电压分区控制策略,对母线电压实施5层电压控制,蓄电池用于稳定波动较小时的母线电压,超级电容平抑母线电压波动较大时的功率差额,给出了一种根据母线电压波动的极端情况配置超级电容容量的方案。经Matlab/Simulink仿真,验证了该控制策略的可行性。  相似文献   

9.
基于混合储能的电动汽车充电站直流微网协调控制技术的研究对于维持直流微网母线电压的稳定、提高微网系统的经济效益都具有重要意义。提出了以飞轮和蓄电池混合储能作为光储充电站直流微网系统的储能形式,其中飞轮用于平滑高频功率波动和部分低频功率,蓄电池用于平衡基准功率以维持母线电压平滑稳定。并设计了直流母线5层电压(分层)协调控制策略,实现了微网系统中光伏发电、电动汽车充放电、负荷功率需求的协调控制。针对孤岛运行和并网运行中的5种不同工况,在Matlab/Simulink软件平台上对所提出的控制策略进行了仿真分析。仿真结果表明,在所有工况下,所提控制策略都能使直流母线电压在不同电压层间有效切换,维持光储充电站直流微网系统的直流母线电压平衡,实现了整个系统的灵活、可靠运行,因此该控制策略具有可行性和有效性。  相似文献   

10.
为抑制直流微电网母线电压波动,保障直流微电网稳定安全运行,提出一种混合储能系统惯性控制策略, 实现控制混合储能系统产生虚拟惯性来更好地维持直流母线电压稳定.该控制策略采用下垂控制和虚拟直流发电机控 制共同构成混合储能惯性控制策略,使得 DC/DC变换器不仅保有下垂特性还具有惯性特性.在 MATLAB/Simulink 平台上进行仿真试验,仿真试验结果表明通过下垂+虚拟直流发电机的惯性控制方法,实现了直流微电网中各模块按 下垂系数进行功率分配的同时,混合储能系统能更好地响应直流母线上的功率波动,大幅度减小母线电压波动,并平 滑蓄电池的功率输出,延长蓄电池的使用寿命。  相似文献   

11.
无通信互联线储能系统的直流母线协调控制策略   总被引:1,自引:1,他引:0  
针对无通信互联线的储能系统如何在不增加系统成本和复杂度的前提下维持直流母线功率平衡及电压稳定,提出了一种直流母线协调控制策略,DC/AC变流器采用定直流电压或定交流电压控制,两台DC/DC变换器采用包含电池充放电控制的改进型二阶直流电压偏差控制。通过对系统典型工况的分析,说明了系统中各个装置是如何协调工作的。搭建了微网实验平台对所提出的控制策略进行了实验验证,实验结果证明了该控制策略的有效性和实用性。  相似文献   

12.
崔志美 《电气开关》2020,(2):32-34,40
当下储能发展的速度以及多样性催生了多种不同电压等级的储能电池,所以能适应不同电压等级电池组的双向储能并网系统是当下分布式发电发展的关键,而由于直流的DC/DC变流器具有升压功能,所以将直流斩波与逆变背靠背设计能够满足此条件,但是由于在电池充放电过程中直流母线电压存在严重暂态波动,严重降低了储能系统的稳定性。为此本文针对背靠背的储能变流控制系统在充放电过程中所出现的暂态性提出一种基于电池参考电流前馈补偿控制策略,并采用不同电压等级的电池接入系统进行仿真验证。  相似文献   

13.
直流微网是小惯性系统,负荷频繁投切和新能源出力波动等因素都会影响母线电压的稳定。在直流微网系统中,往往通过储能单元维持系统功率平衡和母线电压稳定。针对储能端口双向DC/DC变换器,提出一种简化的虚拟直流电机控制方法,以增强系统的惯性和阻尼;建立虚拟直流电机控制的小信号模型,分析控制策略的稳定性和动态特性;对于动态响应初期母线电压的冲击性变化,提出输出电流前馈的小信号模型补偿方法,进一步平滑母线电压的动态过程;最后通过仿真分析验证了所提控制策略的正确性和有效性。  相似文献   

14.
针对光伏渗透率不断提高而带来的直流配电网惯性低的问题,考虑直流配电网储能设备的潜在惯性支持能力,提出光储直流配电网灵活虚拟惯性控制策略.分析了在直流配电网电压动态变化过程中蓄电池储能与电压变化量之间的关系,并通过建立蓄电池荷电状态与直流电压的函数表达式,进一步提出了在直流电压变化时引入双曲正切函数来灵活快速调节蓄电池换流器的控制策略,从而增加系统惯性,提高电能质量.另外,还考虑了蓄电池的充放电极限问题,通过引入反正切函数来限制其过度充放电.最后,对采用灵活虚拟惯性控制策略的直流配电网进行小信号稳定性分析,得到了所提控制策略中关键参数的取值范围.基于MATLAB/Simulink搭建了四端直流配电网仿真系统,验证了在系统功率不平衡后,所提控制策略能利用虚拟惯性控制有效地抑制直流电压波动,从而提高电压质量和暂态稳定性.  相似文献   

15.
以提高直流微电网内储能单元的动态性能与抗干扰能力为目的,提出了一种针对双向DC/DC变换器的充放电无缝切换控制策略。该策略根据直流母线电压高低进行储能单元自适应充放电切换,进而保持母线电压稳定。在此基础上,考虑到双向DC/DC变换器的非线性特征,引入了可通过fal函数在线调节误差反馈系数的非线性无缝电流环,实现了储能双向DC/DC变换器的充放电无缝切换,提高了控制策略的动态性能与鲁棒性。最后通过仿真与实验:在母线电压跌落、陡升与系统参数变化等工况下,该策略均可实现储能单元的充放电无缝切换,维持母线电压稳定。  相似文献   

16.
混合储能相较于单一储能可以更好地解决微电网电压、频率波动等问题。为了充分利用混合储能系统的优势,使各储能电池优势互补,并考虑到储能变换器弱阻尼、低惯性的特点,提出了基于虚拟直流发电机控制的混合储能单元分频控制策略。该控制策略在混合储能单元分频控制的基础上,对功率密度电池储能变换器采用虚拟直流发电机控制,以增大功率密度型储能的阻尼和惯性,提升直流母线电压的动态稳定性。为验证其有效性,在微源变化和负荷波动2种工况下与传统下垂控制进行仿真对比分析,结果表明所提策略可使母线电压的波动范围限制在±0.75%以内,增强了系统的鲁棒性和稳定性并优化了储能单元的充放电性能。  相似文献   

17.
胡石阳  刘国荣  金楠  李晋 《电源学报》2020,18(5):140-147
传统直流储能系统中电容器荷电状态(state of charge, SOC)的变化会导致直流变换器两端电压不匹配,使得功率器件无法处在软开关状态,从而增加了开关损耗。通过分析软开关控制与电容器SOC之间的关系,本文提出一种双有源桥(dual active bridge, DAB)直流储能系统软开关优化控制,实现储能系统在充放电过程中,各功率器件始终处在软开关状态,维持直流母线电压稳定,降低功率损耗。该方法将储能电容SOC变化引入DAB移相控制,确定SOC与移相角的定量关系,使直流变换器功率器件满足软开关条件。根据直流母线电压及储能系统充放电特性,设计恒压、恒流充电和恒压、恒功率放电控制方法。仿真与实验结果验证了所设计软开关优化控制方法的有效性。  相似文献   

18.
为了减少功率损耗和确保独立交直流混合微电网稳定运行,设计一种新的基于混合储能动态调节的分布式协调控制策略。通过检测直流电压和交流电压频率,该策略对连接交直流微电网的双向AC/DC变流器输出功率进行动态调节。混合储能中采用下垂控制自动调节蓄电池的输出功率,同时超级电容器迅速提供负荷功率的高频分量,以减小负载突变对蓄电池和母线电压造成的冲击。此外,在逆变器的下垂控制器中引入电压前馈补偿量来减小交流负荷的电压波动。最后,利用Matlab/Simulink搭建了混合微电网仿真模型。仿真结果表明,在不同工况下,该分布式控制策略均能控制混合微电网稳定运行及电压稳定。  相似文献   

19.
为充分发挥电动汽车充储放电站与电网的能量双向流动特性,对站内可逆充电机进行建模,并提出相应的控制策略研究。可逆充电机由PWM整流器和双向DC/DC变换器构成,其中可逆PWM整流器采用前馈解耦的电压电流双闭环控制;为延长电池寿命,双向DC/DC变换器充电采用先电流再电压闭环的二阶段控制,而放电则采用电流闭环控制策略。通过可逆充电机建模以及充、放电过程的仿真表明,提出的控制策略能实现低谐波的能量双向流动,且具有抗负载波动的鲁棒性以及较高的电池充放电速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号