首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Carbon-coated Fe3O4 (Fe3O4/C) microspheres activated with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) were prepared, characterized and applied to adsorb bovine serum albumin (BSA). The prepared magnetic microspheres had spherical core-shell structure with a uniform and continuous carbon coating coupled with activation by EDC, and possessed superparamagnetic characteristics. The experimental results showed that the adsorption amount of BSA on the EDC-activated Fe3O4/C (Fe3O4/C-EDC) microspheres was higher than that on the Fe3O4/C microspheres. The maximum adsorption of BSA on Fe3O4/C-EDC microspheres occurred at pH 4.7, which was the isoelectric point of BSA. At low concentrations (below 1.0 M), salt had no noticeable effect on BSA adsorption. The BSA adsorption of Fe3O4/C-EDC microspheres had a better fit to the Langmuir model than the Freundlich isotherm and Temkin isotherm model, and the kinetic data were well described by the pseudo-second-order model. The adsorption equilibrium could be reached within 20 min. High desorption efficiency (97.6%) of BSA from Fe3O4/C-EDC microspheres was obtained with 0.5 M Na2HPO4 (pH 9.4) as the desorbent.  相似文献   

2.
The effects of circulating fluid bed(CFB) ash on the adsorption performance of polycarboxylate superplasticiser and the mechanism of this influence on the dispersive property of the polycarboxylate superplasticiser were investigated by determing the cement paste fluidity, total organic carbon adsorption, infrared spectroscopic analyses and ζ potential test. The experimental results show that the addition of an inorganic salt into the mixture to change the content of SO_4~(2-)and Fe_2 O_3 can improve the adaptability between the CFB ash and polycarboxylate superplasticiser. Adsorption may occur between the polycarboxylate superplasiciser and Fe_2 O_3, SO_4~(2-)or other components in CFB ash, leading to a significant reduction in paste fluidity. As the content of Na_2 SO_4 in CFB ash reaches 3% or Fe_2 O_3 reaches 9%, the paste loses its liquidity. The organic carbon content in the liquor decreases with an increase in Na2_ SO_4 or Fe_2 O_3 content. Adding some Ba(NO_3)_2 and Na_2 S to the liquor can recover the organic carbon content to a certain extent, and the absolute value of ζ potential will increase. The addition of Ba(-NO_3)_2 or Na_2 S reduces the adsorption property of Na_2 SO_4 or Fe_2 O_3 in CFB ash on the polycarboxylate superplasticiser.  相似文献   

3.
Magnetic nanoparticles (Fe304) were prepared by chemical precipitation method using Fe^2+ and Fe^3+ salts with sodium hydroxide in the nitrogen atmosphere. Fe3O4 nanoparticles were coated with human serum albumin(HSA) for magnetic resonance imaging as contrast agent. Characteristics of magnetic particles coated or uncoated were carried out using scanning electron microscopy and X-ray diffraction. Zeta potentials, package effects and distributions of colloid particles were measured to confirm the attachment of HSA on magnetic particles. Effects of Fe3O4 nanoparticles coated with HSA on magnetic resonance imaging were investigated with rats. The experimental results show that the adsorption of HSA on magnetic particles is very favorable to dispersing of magnetic Fe3O4 particles, while the sizes of Fe3O4 particles coated are related to the molar ratio of Fe3O4 to HSA. The diameters of the majority of particles coated are less than 100 nm. Fe3O4 nanoparticle coated with HSA has a good biocompatibility and low toxicity. This new contrast agent has some effects on the nuclear magnetic resonance imaging of liver and the lowest dosage is 20μmol/kg for the demands of diagnosis.  相似文献   

4.
The preparation of activated carbon from Chinese fir sawdust by zinc chloride activation under both nitrogen atmosphere and vacuum conditions was carried out in a self-manufactured vacuum pyrolysis reactor. The effects of the system pressure and the activation condition (nitrogen or vacuum) on pore development were investigated. The results show that both high quality activated carbon and high added-value bio-oil can be obtained simultaneously via vacuum chemical activation. The characteristics of the activated carbons produced under vacuum conditions are better than those prepared under nitrogen atmosphere. The performance parameters of the activated carbon obtained under vacuum conditions are as follows: the pore size distribution is mainly microporous, the Brunauer-Emmett-Teller (BET) surface area is 1 070.59 m2/g, the microporous volume is 0.502 4 cm3/g, the average pore size is 2.085 nm, and the iodine adsorption value and the methylene blue adsorption value are 1 142.92 and 131.34 mg/g, respectively. The activated carbon from vacuum chemical activation has developed micropores, and the N2 adsorption equilibrium constant of the corresponding activated carbon gradually increases with the decrease of reaction system pressure.  相似文献   

5.
A composite material (Fe3O4/Coke) using coke supported Fe3O4 magnetic nanoparticles was successfully prepared via an in-situ chemical oxidation precipitation method and characterized by SEM, XRD, Raman, and FTIR. The results showed that the Fe3O4 nanoparticles existed steadily on the surface of coke, with better dispersing and smaller particle size. The catalytic ability of Fe3O4/Coke were investigatied by degrading p-nitrophenol (P-NP). The results showed that the apparent rate constant for the P-NP at 1.0 g·L?1 catalyst, 30 mmol·L?1 H2O2, pH=3.0, 30 °C and the best ratio of Coke/Fe3O4 0.6, was evaluated to be 0.027 min–1, the removal rate of CODCr was 75.47%, and the dissolubility of Fe was 2.42 mg·L–1. Compared with pure Fe3O4, the catalytic ability of Fe3O4/Coke in the presence of H2O2 was greatly enhanced. And Fe3O4/Coke was a green and environmental catalyst with high catalytic activity, showing a good chemical stability and reusability.  相似文献   

6.
The crystallization kinetics of amorphous Nd3. 6 Pr5.4 Fe83 Co3 B5 and the preparation of α-Fe/Nd2 Fe14 B nanocomposite magnets by controlled melt-solidification of Nd3.6Pr5.4Fe83Co3B5 was investigated by employing DTA, XRD, and TEM. The results show that a metastable intermediate phase Nd8Fe27B24 prior to α-Fe and Nd2 Fe14 B phases is crystallized as the amorphous Nd3.6 Pr5.4 Fe83 Co3 B5 is heated to 1 223 K. The crystallization activation energy of α-Fe and Nd8 Fe27324 phases is larger at the beginning stage of crystallization, and then it decreases with crystallized fraction x for the former and has little change when x is below 70% for the latter, which essentially results in an α-Fe/Nd2 Fe14 B microstructure with a relatively coarse grain size about 20-60 nm and a non-uniform distribution of grain size in the annealed alloy. The a-Fe/Nd2 Fe14 B nanocomposite magnets with a small average grain size about 14 nm and a quite uniform grain size distribution were prepared by controlled melt-solidification of nealing the amorphous Nd3. 6 Pr5. 4 Fe83 Co3 B5 precursor alloy.  相似文献   

7.
A novel type of metal oxide/activated carbon catalyst was prepared by sol-gel method for the hydrolysis of carbonyl sulfide (COS). The influences of the calcination temperature, additive content (2.5%–10.0% Fe2O3, mass fraction) and the basic density of the activation process were thoroughly investigated. The surface of catalysts was characterized by Boehm titration. The products were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that catalysts with 2.5%–5.0% Fe2O3 after calcining at 500 °C have superior activity. The conversion rate of COS increases with increasing the relative density of basic capacity loaded onto activated carbon(AC), and the activity follows the order: KOH>Na2CO3>NaHCO3. Boehm titration data clearly show that the total acidity increases (from 0.06 to 0.48 mmol/g) and the basic groups decrease (from 0.78 to 0.56 mmol/g) after COS hydrolysis and H2S adsorption. The XPS results show that the product of H2S may be absorbed by the interaction with metal compounds and O2 to form sulfate (171.28 eV) and element sulfur (164.44 eV), which lead to catalysts poisoning.  相似文献   

8.
Fe3O4/carbon nanotubes (Fe3O4/CNTs) nanocomposites were prepared by polylol high-temperature decomposition of the precursor ferric chloride and CNTs in liquid triethylene glycol. After surface modification with hexanediamine, folate was covalently linked to the amine group of magnetic Fe3O4/CNTs nanocomposites. The products were characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, and vibrating sample magnetometry. Then Fe3O4/CNTs were used as a dual-drug carrier to co-delivery of the hydrophilic drug epirubicin hydrochloride and hydrophobic drug paclitaxel. The results indicated that the Fe3O4/CNTs had a favorable release property for epirubicin and paclitaxel, and thus had potential application in tumor-targeted combination chemotherapy.  相似文献   

9.
The chiral materials were prepared by using the carbon fiber helices as chiral inclusions, and the composite of Fe3O4 and polyaniline as matrix. The electromagnetic properties, including the rotation angles, the axial ratios and the complex chirality parameters, were measured by using a circular waveguide method in the 8.5-11.0 GHz frequency range. The dependence of these electromagnetic properties on the frequency and the concentration of the Fe3O4 in the composite matrix were analyzed. The results show that an appropriate concentration of Fe3O4 in the matrix is useful in improving the electromagnetic properties of the chiral material.  相似文献   

10.
为解决煤制气废水生化处理后出水仍含有大量有毒和难降解污染物,对环境产生严重污染的问题,以污水污泥为原料制备污泥基活性炭,采用浸渍法将其负载过渡金属锰和铁的氧化物(主要为Mn_3O_4和Fe_3O_4,负载量分别为15.52%和7.45%),制备比表面积分别为327.5和339.1 m~2/g的臭氧催化剂.中试实验结果表明,催化剂的使用显著提高臭氧氧化废水污染物的效能,处理后出水COD、TOC、总酚和氨氮质量浓度分别为41~43,19~20,0.6~0.9和4.3~4.5 mg/L,均达到城镇污水处理厂污染物排放一级A标准;在最佳的臭氧投加量18 g/h条件下,催化剂的使用将臭氧利用率提高40%,达1.24 mg/mg(以COD计),显著降低工艺运行成本;相比新鲜的催化剂,连续50次的催化臭氧氧化运行,COD去除率仅下降5.2%.催化剂具有良好的稳定性,制备成本仅为5 000元/t.制备的臭氧催化剂具有性能高效稳定、经济节约和可持续发展的技术优势,适用于强化臭氧深度处理煤制气废水.  相似文献   

11.
Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modified by L-dopa or dopamine using sonication method. The analysis of FTIR clearly indicated the formation of Fe-O-C bond. Direct immobilization of trypsin (EC: 3.4.21.4) on Fe3O4 magnetic nanoparticles with L-dopa and dopamine spacer was investigated using glutaraldehyde as a coupling agent. No significant changes in the size and magnetic property of the three kinds of magnetic nanoparticles linked with or without trypsin were observed. The existence of the spacer molecule on magnetic nanoparticles could greatly improve the activity and the storage stability of bound trypsin through increasing the flexibility of enzyme and changing the microenvironment on nanoparticles surface compared to the naked magnetic nanoparticles.  相似文献   

12.
Silver coatings on the exterior surface of monolithic activated carbon (MAC) with different morphology were prepared by directly immersing MAC into [Ag(NH3)2]NO3 solution. Acid and base treatments were employed to modify the surface oxygenic groups of MAC, respectively. The MACs’ Brunauer-Emmett-Teller (BET) surface area, surface groups, and silver coating morphology were characterized by N2 adsorption, elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), respectively. The coating morphology was found to be closely related to the surface area and surface functional groups of MAC. For a raw MAC which contained a variety of oxygenic groups, HNO3 treatment enhanced the relative amount of highly oxidized groups such as carboxyl and carbonates, which disfavored the deposition of silver particles. By contrast, NaOH treatment significantly improved the amount of carbonyl groups, which in turn improved the deposition amount of silver. Importantly, lamella silver was produced on raw MAC while NaOH treatment resulted in granular particles because of the capping effect of carbonyl groups. At appropriate [Ag(NH3)2]NO3 concentrations, silver nanoparticles smaller than 100 nm were homogeneously dispersed on NaOH-treated MAC. The successful tuning of the size and morphology of silver coatings on MAC is promising for novel applications in air purification and for antibacterial or aesthetic purposes.  相似文献   

13.
Fe2O3@polypyrrole nanotubes (Fe2O3@PPy nanotubes) have been successfully prepared by in-situ polymerization of the pyrrole on the surface of Fe2O3 nanotubes (Fe2O3-NTs), via using L-Lysine as modified surfactant. Hollow PPy nanotubes were also produced by dissolution of the Fe2O3 core from the core/shell composite nanotubes with 1 mol·L?1 HCl. Scanning electron microscopy(SEM), transmission electron microscope (TEM), selective-area electron diffraction (SAED), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy(FT-IR) confirmed the formation of Fe2O3-NTs and Fe2O3@PPy core/shell nanotubes. Its catalytic properties were investigated under the ultrasound. The results of UV-vis spectroscopy (UV) demonstrated Rhodamine B (RhB) can be efficiently degraded by Fe2O3 @PPy nanotubes.  相似文献   

14.
Sodium beta alumina(Na-β-alumina) films were synthesized by heat treatment of NaAl_6O_(9.5)and γ-NaA1O_2 films at temperatures of 1 373-1 573 K.Single-phase γ-NaA1O_2 and NaAl_6O_(9.5) films were prepared by laser chemical vapor deposition at the deposition temperatures of 976 and 1 100 K,respectively.Subsequent heat treatment of the films resulted in the formation of Na-β-alumina with α-Al_2O_3 at temperatures above 1 373 K for NaAl_6O_(9.5) and 1 473 K for γ-NaA1O_2.On heat treatment at temperatures of 1 473-1 573 K,the faceted morphology with terraces of the as-deposited(110)-oriented γ-NaAlO_2 films transformed to a porous morphology with platelet grains comprising Na-β-alumina and α-Al_2O_3.On heat treatment at temperatures of1 373-1 473 K,the pyramidal,faceted grains of as-deposited NaAl_6O_(9.5) films transformed to planer,shapeanisotropic morphology in the film of mixed Na-β-alumina and α-Al_2O_3.A dense morphology was observed in both the as-deposited and heat-treated NaAl_6O_(9.5) films.  相似文献   

15.
Xiao  Peng  Shi  MinJie  Xu  Li  Tao  FengBo  Li  Yu  Zhu  HangTian  Liu  YuTing  Li  ZhiMin  Zhou  YunPeng  Feng  Wei 《中国科学:技术科学(英文版)》2021,64(10):2246-2254

Benefiting from high flexibility and weavability, the wire-shaped supercapacitors (SCs) arouse tremendous interests for the applications in wearable/portable electronics. Graphene fiber (GF) is considered as a promising linear electrode for wire-shaped SCs. However, the bottleneck is how to develop the GF-based linear electrode with facile fabrication process while well-maintaining satisfactory electrochemical performance. Herein, a novel Fe3O4@GF composite linear electrode is proposed via a chemical reduction-induced assembly approach, in which the GO and Fe3O4 nanoparticles (NPs) realize the efficient self-assembly owing to the electrostatic and van der Waals interactions, as well as the sufficient reduction of GO during the preparation process. The resultant fiber-shaped architecture shows boosted charge-transfer kinetics, high flexibility and structural integrity. Such Fe3O4@GF linear electrode exhibits excellent electrochemical behaviors including a large volumetric specific capacitance (∼250.75 F cm−3), remarkable rate capability and favorable electrochemical kinetics in aqueous electrolyte, superior than previously reported GF-based linear electrodes. For real application, a high-performance wire-shaped SC with excellent flexibility and weavability is fabricated based on such Fe3O4@GF linear electrode and gel electrolyte, demonstrating ultrahigh volumetric energy density (18.8 mWh cm−3), power density (4000 mW cm−3) and strong durability (∼93.5% retention after 10000 cycles). Prospectively, the fabricated wire-shaped SC can maintain reliable electrochemical behaviors in various deformation states, showing its potentials in future portable and wearable devices.

  相似文献   

16.
A novel fluorescent probe for H2PO4 - was designed and fabricated based on the carbon dots/Fe3+ composite. The carbon dots were synthesized by an established one-pot hydrothermal method and characterized by transmission electron microscope, X-ray diffractometer, UV-Vis absorption spectrometer and fluorescence spectrophotometer. The carbon dots/Fe3+ composite was obtained by aqueous mixing of carbon dots and FeCl3, and its fluorescence property was characterized by fluorescence spectrophotometer. The fluorescence of carbon dots was quenched by aqueous Fe3+ cations, resulting in the low fluorescence intensity of the carbon dots/Fe3+ composite. On the other hand, H2PO4 - reduced the concentration of Fe3+ by chemical reaction and enhanced the fluorescence of the carbon dots/Fe3+ composite. The Stern-Volmer equation was introduced to describe the relation between the relative fluorescence intensity of the carbon dots/Fe3+ composite and the concentration of H2PO4 -, and a fine linearity (R 2=0.997) was found in the range of H2PO4 - concentration of 0.4-12 mM.  相似文献   

17.
A novel gap-plasmon of Fe3O4@Ag core-shell nanoparticles for surface enhanced fluorescence detection of Rhodamine B (RB) was developed. Fe3O4@Ag core-shell nanostructures with Ag shell and Fe3O4 core were synthetized by self-assembled method with the assistance of 3-mercaptopropyl trimethoxy silane (MPTS). To study the RB fluorescence enhanced by gap-plasmon, the fluorescence properties of RB on the substrates with different nanogap densities were systematically investigated, and the results showed that the fluorescence intensity of RB on Fe3O4@Ag core-shell NPs substrate was much stronger than that on bare glass substrate, and the fluorescence intensity was further improved by using multilayer Fe3O4@Ag core-shell NPs substrate which had higher nanogap density. Different from the mechanism that is based on the maximum overlap of the surface plasmon resonance (SPR) band and emission band, the mechanism of the fluorescence enhancement in our work is based on the localized surface plasmon (LSP) and the gap plasmon near-field coupling with the Fe3O4@Ag core-shell NPs. Besides, the detection limit obtained was as low as 1×10-7 mol/L, and the Fe3O4@Ag core-shell NPs substrate had high selectivity for RB fluorophores. It was demonstrated that the Fe3O4@Ag core-shell NPs substrate had activity, good stability, and selectivity for fluorescence detection of RB. And the detection of RB by the surface plasmon enhanced fluorescence was more convenient and rapid than the traditional detection methods in previous works.  相似文献   

18.
The self-cleaning glass coated with Fe^3 -TiO2 photocatalytic thin film was prepared by sol-gel process from the system Ti(OC4H9),-NH(C2H4OH)2-C2H5OH-H2O containing FeCl3. The microstructure and properties of the film were studied using differential thermal analysis-thermogravimetry(DTA-TG), X-ray diffration (XRD) and scanning electron microscope(SEM). The transmittance of the self-cleaning glass was measured by using UV-Vis spectrometer. The effects of content of Fe^3 and the thickness of Fe^3 -TiO2 thin film on the photocatalytic ac-tivity were examined. The results show that the photocatalytic thin films are mainly composed of Fe3O4 and TiO2 particles within 10-100 nm. The appropriate amount of Fe^3 is effective for improving the photocatalytic activities of TiO2. The best photocatalytic activity is obtained when the molar ratio of Fe^3 to TiO2 is 0. 005 and the glass is coated with 9 layers.  相似文献   

19.
Nanoparticles(NPs) can promote the column flotation process in mining industry. Nanoparticles' effects on column flotation process(copper recovery, grade and flotation rate constant) are assessed in Sarcheshmeh Copper Complex, Iran, through response surface methodology(RSM) optimization technique. The c-Al_2O_3, a-Fe_2O_3, SiO_2, and TiO_2 nanoparticles are selected for these experiments. A flotation rate constant is chosen as a response to assess the effect of nanoparticles on flotation in its kinetic sense.The process p H and nanoparticle dosage are selected as the influential parameters. Results obtained from RSM indicated that the maximum percentage of Cu recovery and grade is obtained at p H of 12 and nanoparticle dosage of 6 kg/t, through a-Fe_2O_3 and c-Al_2O_3 nanoparticles, respectively. Applying nanoparticles in particular c-Al_2O_3 and a-Fe_2O_3 increases the Cu recovery by 8–10% together with the grade by 3–6% in a significant manner. It is revealed that nanoparticles could effectively be applied in enhancing the flotation performance.  相似文献   

20.
In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号