首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pheromone detection by mammalian vomeronasal neurons   总被引:4,自引:0,他引:4  
The vomeronasal organ (VNO) of mammals plays an essential role in the perception of chemical stimuli of social nature including pheromone-like signals but direct evidence for the transduction of pheromones by vomeronasal sensory neurons has been lacking. The recent development of electrophysiological and optical imaging methods using confocal microscopy has enabled researchers to systematically analyze sensory responses in large populations of mouse vomeronasal neurons. These experiments revealed that vomeronasal neurons are surprisingly sensitive and highly discriminative detectors of volatile, urinary metabolites that have pheromonal activity in recipient mice. Functional mapping studies of pheromone receptor activation have uncovered the basic principles of sensory processing by vomeronasal neurons and revealed striking differences in the neural mechanisms by which chemosensory information is detected by receptor neurons in the VNO and the main olfactory epithelium. These advances offer the opportunity to decipher the logic of mammalian pheromonal communication.  相似文献   

2.
The organization of the vomeronasal system (VNS) of fetal, newborn, and adult cats was investigated by microdissection and microscopic examination of sections stained conventionally or with lectins (UEA-1, LEA) or antibodies against proteins Gα(i2) (associated with vomeronasal receptor type1) and Gα(o) (associated with receptor vomeronasal receptor type2). The feline VNS is morphologically similar to that of other mammals. Staining with lectins and anti-Gα(i2) was uniform throughout the sensory epithelium of the vomeronasal organ, and throughout the nervous and glomerular layers of the accessory olfactory bulb (AOB); anti-Gα(o) stained no VNS tissue. This organization places the cat together with several other domestic or farm animals (dog, horse, sheep, goat, pig) in a group of mammals with just a single path of communication between the sensory epithelium of the vomeronasal organ and AOB, in contrast to the two-path model found in rodents and other mammals (in which apical and basal sensory epithelium layers project to rostral and caudal AOB areas, respectively). However, the cat differs from the sheep and pig in that the development of its VNS is still incomplete at birth.  相似文献   

3.
Mammalian olfactory neurons possess a well-developed system of endocytic vesicles, endosomes, and lysosomes in their dendrites and perikarya. Vomeronasal neurons are similar and also contain much perikaryal agranular endoplasmic reticulum (AER). Olfactory supporting cells contain endocytic vesicles and endosomes associated closely with abundant fenestrated AER, and vesicles and numerous large dense vacuoles are present basally. Vomeronasal supporting cells have little AER, and few dense vacuoles occur in their bases. In olfactory neurons, ultrastructural tracers (0.08% horseradish peroxidase, thorium dioxide, ferritin) are endocytosed by olfactory receptor endings and transported to the cell body, where their movement is halted in lysosomes. Higher concentrations (1%) of horseradish peroxidase penetrate olfactory receptor plasma membranes and intercellular junctions. In olfactory supporting cells, endocytosed tracers pass through endosomes to accumulate in dense basal vacuoles. These observations indicate that olfactory sensory membranes are rapidly cycled and that endocytosed materials are trapped within the epithelium. It is proposed that in the olfactory epithelium, endocytosis presents redundant odorants to the enzymes of the supporting cell AER to prevent their accumulation, whereas in the vomeronasal epithelium the receptor cells carry out this activity.  相似文献   

4.
In many terrestrial tetrapodes, a pair of vomeronasal organs (VNOs), which are chemosensory apparatuses, are situated at the base of the nasal septum in the anterior nasal cavity. The purposes of this review are to summarize comparative neuroanatomy and to introduce recent progress in neurobiological studies of the VNO. Five types of VNOs can be identifiable in terms of anatomical organization; snakes possess the most complex one. Sensory cells in the VNO, vomeronasal receptor neurons (VRNs), are located in its neuroepithelium, vomeronassal sensory epithelium. The VRNs retain the characteristic of epithelial cells in that they are born continuously from progenitor cells. They contain two prominent subcellular structures: microvilli and extraordinarily large amounts of smooth endoplasmic reticulum and a few unique glycoconjugates. The VRNs express two types of G-protein -subunits: Gi(alpha2) and Go(alpha) and each of them is coupled with putative pheromone receptors, V1Rs and V2Rs, respectively. Recent physiological and biochemical studies have demonstrated that pheromones depolarize the V1R-Gi(alpha2) and V2R-Go(alpha) VRNs via IP(3)-mediated mechanisms. The VRNs do not show adaptation and are ultrasensitive to putative pheromones. Other than being a chemosensory organ, the VNO and its primordium might play important roles for brain development; hypothalamic neurons that produce gonadotropin-releasing hormone are born in the VNO primordium and a few other neuron-like cells may be born in the VNO primordium and VNO. In human fetuses, anatomical findings strongly suggest that their VNOs contain a neuroepithelium. By contrast, it is unlikely that adult human VNO serves as a chemosensory organ.  相似文献   

5.
The morphological development of the vomeronasal organ (VNO) and accessory olfactory bulb (AOB) of the sheep from anlage to birth were studied by classical and histochemical methods using embryos and fetuses obtained from an abattoir with ages estimated from crown-to-rump length. Both VNO and AOB developed in a biologically logical sequence and completed their morphological development around day 98, at entry into the last third of the gestation period. A lectin with specificity for oligomeric N-acetylglucosamine labeled the sensory epithelium of the VNO, the vomeronasal nerves, and the nervous and glomerular layers of the AOB before birth. These results suggest that the vomeronasal system, which is well developed and functional in adult sheep, may be able to function at or even before birth in these animals (whereas in rodents, for example, this is precluded by the AOB not completing its development until after birth).  相似文献   

6.
The vomeronasal and septal olfactory organs are two neurosensory structures in the mammalian nasal septum which are poorly understood relative to the main olfactory system. The vomeronasal organ is a paired, blind-ending tubular structure that opens rostrally into the nasal cavity in some species and into the incisive ducts in others. When present in mammals, the septal olfactory organ is an island of olfactory mucosa positioned such that it is in the primary air pathway in the caudal portion of the nasal cavity. Mammalian nasal glands, with a diverse histochemical and ultrastructural morphology, secrete a variety of substances onto the mucosal surface. One of these substances, odorant binding protein, localized in bovine nasal glands and lateral nasal glands of rodents, may be important in the capture and conveyance of odorant molecules to olfactory receptors. The objectives of this paper are to present original data while reviewing the literature on the ultrastructure of vomeronasal and septal olfactory neuroepithelia, and of vomeronasal, bovine nasal, and lateral nasal glands. Nasal tissues from pigs, calves, and hamsters were prepared for electron microscopy. Neurosensory epithelia of the porcine vomeronasal organ and the hamster septal olfactory organ are similar to that described for the vomeronasal and septal olfactory organs of other mammals. Bovine nasal and rodent lateral nasal glands consist of subregions which differ morphologically; the most abundant acinar cell type in the bovine nasal gland contains lightly electron dense secretory granules while that of the rodent lateral nasal gland contains both small electron dense and large, electron lucent granules. The porcine vomeronasal gland contains numerous small, dense granules of a diverse morphology.  相似文献   

7.
The enormous morphological diversity and heterogeneity of the vomeronasal system (VNS) in mammals--as well as its complete absence in some cases--complicates the extrapolation of data from one species to another, making any physiological and functional conclusions valid for the whole Mammalian Class difficult and risky to draw. Some highly-evolved macrosmatic mammals, like sheep, have been previously used in interesting behavioral studies concerning the main and accessory olfactory systems. However, in this species, certain crucial morphological peculiarities have not until now been considered. Following histological, histochemical and immunohistochemical procedures, we have studied the vomeronasal organ (VNO) and the accessory olfactory bulb (AOB) of adult sheep. We have determined: (1) that all structures which classically define the VNO in mammals are present and well developed, providing the morphological basis for functional activity. (2) that, conversely, there is only a scant population of scattered mitral/tufted cells. One morphological consequence of both details is that the strata of the AOB in adult sheep are not as sharply defined as in other species; moreover, the small number of the mitral/tufted cells in the AOB may imply that the VNS of adult sheep is not capable of functioning in the way a well-developed VNS does in other species. (3) the zone to zone projection from the apical and basal sensory epithelium of the VNO to the anterior and posterior part of the AOB, respectively, typical in rodents, lagomorphs and marsupials, is not present in adult sheep.  相似文献   

8.
The vomeronasal organ (VNO) that preferentially detects species‐specific substances is diverse among animal species, and its morphological properties seem to reflect the ecological features of animals. This histological study of two female reticulated giraffes (Giraffa camelopardalis reticulata) found that the VNO is developed in giraffes. The lateral and medial regions of the vomeronasal lumen were covered with sensory and nonsensory epithelia, respectively. The vomeronasal glands were positive for periodic acid‐Schiff and alcian blue (pH 2.5) stains. The VNO comprises several large veins like others in the order Cetartiodactyla, suggesting that these veins function in a pumping mechanism in this order. In addition, numerous thin‐walled vessels located immediately beneath the epithelia covering the lumen entirely surrounded the vomeronasal lumen. This sponge‐like structure might function as a specific secondary pump in giraffes.  相似文献   

9.
Macro and microdissection methods, conventional histology and immunohistochemical procedures were used to investigate the nasal cavity and turbinate complex in fetal and adult sheep, with special attention to the ethmoturbinates, the vestibular mucosa, and the septal mucosa posterior to the vomeronasal organ. The ectoturbinates, which are variable in number and size, emerge and develop later than the endoturbinates. The olfactory sensory epithelium is composed of basal cells, neurons, and sustentacular cells organized in strata, but numerous different types are distinguishable on the basis of their thickness and other properties; all variants are present on the more developed turbinates, endoturbinates II and III. Mature neurons and olfactory nerve bundles express olfactory marker protein. We found no structure with the characteristics that in mouse define the septal organ or the ganglion of Grüneberg. Our results thus suggest that in sheep olfactory sensory neurons are exclusively concentrated in the main olfactory epithelium and (to a lesser extent) in the vomeronasal organ. Microsc. Res. Tech. 77:1052–1059, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Role of nerve growth factor in the olfactory system   总被引:1,自引:0,他引:1  
Olfactory neurons are unique in the mammalian nervous system because of their capacity to regenerate in adult animals. It has been shown that olfactory receptor cells located in the olfactory epithelium are replaced on a continuous basis and in response to injury throughout the life span of most species. NGF, which is one of the neurotrophic factors, is present in many areas of the central and peripheral nervous system. It has been shown that NGF in the olfactory bulb plays a role in the survival of cholinergic neurons in the horizontal limb of the diagonal band (HDB). Recent studies of NGF in the olfactory bulb suggest that it is involved in the development, maintenance, and regeneration of olfactory receptor cells. In this study, we review reports examining the relationship between NGF in the olfactory bulb and neuronal regeneration and development in the mammalian olfactory systems. Low- and high-affinity NGF receptor immunoreactivity is markedly expressed during regeneration and at different stages of development in the mouse olfactory system. This level of immunoreactivity is no longer present after completion of regeneration and at maturation. Other findings indicate that NGF injected into the olfactory bulb is transported retrogradely to the olfactory epithelium. It has also been shown that continuous anti-NGF antibody injection into the olfactory bulb causes degeneration and olfactory dysfunction. Administration of NGF directory into nasal cavity results in an increase in the expression of olfactory marker protein within the olfactory epithelium in axotomized rats. These findings suggested that the presence of NGF in the olfactory bulb plays an essential role in regeneration, maintenance, and development in the olfactory system of mammals.  相似文献   

11.
Apoptosis in the mature and developing olfactory neuroepithelium   总被引:3,自引:0,他引:3  
Neuronal apoptosis is important in the developmental sculpting of a normal nervous system and also in the loss of neurons caused by neurodegenerative disease, ischemia or trauma. In a developing embryo, exquisite mechanisms of regulation exist to balance factors that control neuronal birth and death within a given neuronal group, so that sufficient neurons develop and survive to elicit normal function. Postnatally, the only part of the mammalian nervous system where many of these regulatory balance mechanisms are retained is the olfactory epithelium (OE). During the last 30 years, researchers investigating olfactory receptor neuron cellular and developmental biology have focussed on the regeneration of the neuronal population within the olfactory neuroepithelium, following the induced death of the mature neuronal population. This body of work has thus far overshadowed the equally important and intrinsically linked phenomenon of the death of mature olfactory receptor neurons, which is required to initiate regeneration. The purpose of this review is to reveal what has been established about the different forms of cell death that can occur in neurons of the olfactory epithelium, and highlight the identified pro- and anti-apoptotic pathways that control the normal and induced turnover of olfactory receptor neurons.  相似文献   

12.
Little is known about the development of the olfactory organs of camel. In this study, prenatal development and neuronal differentiation of the vomeronasal organ (VNO) and the olfactory epithelium (OE) of the one‐humped camel were studied by immunohistochemistry and lectin histochemistry. A neuronal marker, protein gene product (PGP) 9.5, but not a marker of fully differentiated olfactory receptor cells, olfactory marker protein, intensely labeled the olfactory receptor cells of the VNO and OE at 395 mm, 510 mm, and 530 mm fetal ages, indicating that the olfactory receptor cells are differentiated, but not fully matured both in the VNO and the OE. In 187 mm and 190 mm fetuses, PGP 9.5 yielded faint immunoreactive signals in the VNO, but not in the OE, although the presence of olfactory receptor cells were demonstrated in both tissues by intense WGA and LEL stainings. We conclude that the camel VNO and OE bear differentiated, but still immature receptor cells; in addition, the onset of neuronal differentiation seems to be somewhat earlier in the VNO than in the OE till half of the prenatal life. Microsc. Res. Tech. 78:613–619, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Despite increasing knowledge about the biophysiology of the human olfactory system, understanding of the development of this pathway in humans lags considerably behind that of other vertebrates. Developmental studies have largely concentrated on the generation of cell types in the olfactory epithelium during the first trimester, while detailed ultrastructural observations usually describe the adult morphology. In this review, we have shown that contrary to what has been generally assumed, the surface of the human olfactory epithelium is heterogeneous and that its olfactory nerves differ ultrastructurally from those of other vertebrates studied. The development of the human primary olfactory pathway is discussed in terms of the appearance of olfactory bulb laminae, synaptogenesis and the expression of specific cell markers, such as the S-100 protein and olfactory marker protein (OMP). Positive immunohistochemical staining for N-cadherin in human fetuses suggests that growth of olfactory axons to their target may be mediated by cell adhesion molecules. The overall data presented here indicate that this pathway develops more precociously in humans than in rodents. Whether this translates also to earlier functional maturity remains to be elucidated.  相似文献   

14.
As vitamin C (L-ascorbic acid, VC) is known to be essential for many enzymatic reactions, the study on the transport mechanism of VC through cytoplasmic membrane is crucial to understanding physiological role of VC in cells and the respiratory system. In this regard, the study on the newly identified sodium-dependent VC transporters (SVCTs), SVCT1 and SVCT2, is required in organs that contain high concentration of VC. We have shown the distribution of SVCT proteins in the respiratory system, which has been reported to be one of the organs with a high concentration of VC, using immunohistochemical techniques. In the present study, intense SVCT immunoreactivities (IRs) were mainly localized in the respiratory system epithelial cells. In the trachea, both SVCT1 and 2 were localized in the psuedostratified ciliated columnar epithelium. In the terminal bronchiole, SVCT1 and 2 IRs were mainly observed in the apical portion of the simple columnar epithelium. In addition, SVCT IRs was localized within the cell membrane of some alveolar cells, even though we could not identify the exact cell types. These results provide the first evidence that intense SVCT1 and 2 IRs were found in the apical portion of the respiratory epithelial cells, suggesting that SVCT proteins in the apical portion could transport the reduced form of VC included in the airway surface liquid into the respiratory epithelial cells.  相似文献   

15.
Histamine is the neurotransmitter of photoreceptors in insects and other arthropods. As a photoreceptor transmitter, histamine acts on ligand-gated chloride channels. Another type of histamine receptor has been indicated in the insect central nervous system by binding pharmacology. This receptor is similar to the mammalian H1 receptors, which are G-protein coupled and thus utilize a second messenger system. The distribution of histamine-immunoreactive (HAIR) neurons has been studied in a few insect species: cockroaches, locust, crickets, honey bee, blowflies, and in Drosophila. In addition to its presence in photoreceptor cells, histamine is distributed in a rather small number of neurons in the insect brain. Many of these neurons have extensive bilateral arborizations that innervate several distinct neuropil regions, notably in the protocerebrum. Some patterns of histamine distribution are seen in all the species. On the other hand, the number and morphology of neurons differ between the studied species, and several major neuropils (central body, antennal lobes, mushroom bodies) are supplied by HAIR neurons in some species, but not in others. Thus it appears that there are some species-specific functions of histamine and on others that are preserved between species. Some of the histaminergic neurons may constitute wide field inhibitory systems with functions distinct from those of neurons containing gamma-amino butyric acid (GABA). Novel data are presented for Drosophila and the cockroach Leucophaea maderae and a comparison is made with published data on other insects.  相似文献   

16.
The primary olfactory pathway is an elegant and simple system in which to study neurogenesis and neuronal plasticity because of the simple fact that olfactory receptor neurons (ORNs) are continually generated throughout the adult lifetimes of vertebrates. Thus, neuronal birth, differentiation, survival, axon pathfinding, target recognition, synapse formation, and cell death are developmental events that can be examined in the mature olfactory epithelium (OE). Neurotrophins (nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3, and 4/5) are a family of bioactive peptides that exert their effects by interacting with high- and low-affinity receptors on the surfaces of responsive cells, and have been implicated in several stages of neuronal development throughout the central and peripheral nervous system (CNS and PNS). There has been significant interest within the olfactory community as to how these multifunctional peptides might regulate the cycle of degeneration and regeneration of olfactory receptor neurons. The focus of this review is to highlight what is known about the actions of neurotrophins in the primary olfactory pathway, and to pinpoint future directions that will enable us to further understand their role in olfactory receptor neuron development and turnover.  相似文献   

17.
Decapod crustaceans have a well-defined olfactory system characterised by a set of chemosensitive sensilla grouped together in an array (the olfactory organ) on their antennules. Olfactory receptor neurons in the olfactory organ project exclusively to, and terminate in, cone-shaped olfactory glomeruli in a discrete neuropil in the brain, the olfactory lobe. The olfactory organ appears to be the only afferent input to the olfactory lobe, making the system convenient for the study of its development and growth. The progression of development of the olfactory system is a continuum and can be traced from the first appearance of peripheral receptor cells and central stem cells through to the construction of the tracts and neuropils that constitute the adult system. Cell proliferation leading to the production of peripheral and central olfactory neurons can be observed with mitotic markers in both embryonic stages and in postembryonic growth. Cell proliferation in the olfactory system in crayfish persists throughout the lives of the animals and can be modulated by manipulating the living conditions imposed on growing animals. Large serotonergic neurons that are associated with the olfactory system may play a role in the regulation of cell proliferation.  相似文献   

18.
制造系统的状态监测与多传感器信息融合   总被引:5,自引:2,他引:5  
运用多传感器信息融合理论与技术,针对高级制造系统设备与过程状态监测的特点、难 与要求,探讨建立柔性制造单元智能状态监测与诊断决策模型,并给出一具体FMC状态监测系统及监测结果分析。  相似文献   

19.
The mitogenic effects of insulin-like growth factors (IGFs) are regulated by a family of insulin-like growth factor binding proteins (IGFBPs). One member of this family, IGFBP-3, mediates the growth-inhibitory and apoptosis-inducing effects of a number of growth factors and hormones such as transforming growth factor-beta, retinoic acid, and 1,25-dihydroxyvitamin D3. IGFBP-3 may act in an IGF-dependent manner by attenuating the interaction of pericellular IGFs with the type-I IGF receptor. It may also act in an IGF-independent manner by initiating intracellular signaling from a cell surface receptor, or by direct nuclear action, or both. The possibility of a membrane-bound receptor is strengthened by recent studies which have identified members of the transforming growth factor-beta receptor family as having a role, either directly or indirectly, in signaling from the cell surface by IGFBP-3. A number of growth factors and hormones stimulate the expression and secretion of cellular IGFBP-3, which then signals from the cell surface to bring about some of the effects attributed to the primary agents. Within the cell, the apoptosis-inducing tumor suppressor, p53, can also induce IGFBP-3 expression and secretion. Since IGFBP-3 upregulates the cell cycle inhibitor, p21(Waf1), and increases the ratio of proapoptotic to antiapoptotic members of the Bcl family, it appears to exert the same effects on major downstream targets of cell signaling as p53 does. The nuclear localization of IGFBP-3 has been described in a number of cell types. IGFBP-3 may act to import IGFs or other nuclear localization signal-deficient signaling molecules into the nucleus. It may also act directly in the nucleus by enhancing the activity of retinoid X receptor-alpha and thereby promote apoptosis. All of the above phenomena will be discussed with particular emphasis on the growth of breast cancer cells.  相似文献   

20.
Morphology of olfactory epithelium in humans and other vertebrates.   总被引:4,自引:0,他引:4  
Human olfactory epithelium is similar in organization and cell morphology to that of most vertebrate species. The epithelium has a pseudostratified columnar organization and consists of olfactory neurons, supporting and basal cells. Near the mucosal surface there are also microvillar cells. These cells have neuron-like features and may be chemoreceptors. Human olfactory epithelium is not a uniform sensory sheet. Patches of non-sensory tissue often appear in what was thought to be a purely olfactory region. The significance of these patches has not been determined, but they could reflect exposure to environment agents or changes that occur during the normal aging process. In order to better understand the human olfactory system, further knowledge of the normal structure is necessary. This review addresses the morphology of the human olfactory epithelium and the remarkable plasticity of the vertebrate olfactory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号