首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Materials Research Bulletin》2006,41(6):1127-1132
Microwave dielectric ceramics of tungsten–bronze-type BaSm2Ti4O12 were prepared by doping CuO (up to 2 wt.%) as the liquid-phase sintering aid. The effects of CuO additive on the densification, micro structure and dielectric properties were investigated. Due to the liquid-phase effect, the sintering temperature of BaSm2Ti4O12 ceramics with 1 wt.% CuO addition can be effectively reduced to 1160 °C, about 200 °C lower than that of pure BaSm2Ti4O12 ceramics, while good microwave dielectric properties of ɛr = 75.8, Q*f = 4914.6 GHz and τf = −7.65 ppm/°C were still achieved.  相似文献   

2.
Microwave dielectric ceramics ZnTa2O6 were prepared by conventional mixed oxide route. The effects of CaF2 addition on the microstructures and microwave dielectric properties of ZnTa2O6 ceramics were investigated. Formation of second phase can be detected at the high addition of CaF2 (0.5–1.0 wt.%). Variation of grain shapes were observed with CaF2 content increasing. The sintering temperature of CaF2-doped ZnTa2O6 ceramics can be effectively lowered from 1400 °C to 1225 °C due to liquid phase effect. The microwave dielectric properties were affected by the amount of CaF2 addition. At 1225 °C for 4 h, ZnTa2O6 ceramics with 0.25 wt.% CaF2 possesses excellent microwave dielectric properties: εr = 31.32, Q × ? = 73600 GHz(6.8 GHz) and τ? = ? 6.97 ppm/°C.  相似文献   

3.
The microwave dielectric properties of CaNb2O6 ceramics were investigated with a view to their application in mobile communication. The CaNb2O6 ceramics were prepared by the conventional solid-state method with various sintering temperatures and sintering times. A maximum density of 4.67 g/cm3 was obtained for CaNb2O6 ceramic, sintered at 1,400 °C for 4 h. Dielectric constants (ε r ) of 13.3–18.1 and quality factor (Q × f) of 12,200–50,000 GHz were obtained at sintering temperatures in the range 1,300–1,500 °C for 4 h. Dielectric constants (ε r ) of 18.0–18.1 and quality factor (Q × f) of 44,300–50,000 GHz were obtained for sintering times in the range 2–6 h at a sintering temperature of 1,400 °C. A dielectric constant (ε r ) of 18.1, a quality factor (Q × f) of 50,000 GHz, and a temperature coefficient of resonant frequency (τ f ) of ?54 ppm/°C were obtained when CaNb2O6 ceramics were sintered at 1,400 °C for 4 h.  相似文献   

4.
姚国光 《功能材料》2008,39(2):242-243
用固相法制备了一系列Mg4(Ta1-xVx)2O9(MTV)陶瓷,研究了V5 取代Ta5 、MTV陶瓷的烧结特性和微波介电性能.用XRD和SEM研究其晶体结构和微观形貌.结果表明:在组分x≤0.3范围内形成了Mg4(Ta1-xVx)2O9连续固溶体.少量V5 取代Ta5 能够使MTV陶瓷的烧结温度从1450℃降至1150℃,但同时品质因数降低.x=0.1,1150℃烧结的Mg4(Ta1-0.1V0.1)2O9陶瓷具有较好的微波介电性能:ε约为11,Q·f值达41000GHz(8GHz).  相似文献   

5.
《Materials Research Bulletin》2006,41(6):1199-1205
B2O3 added Ba(Mg1/3Nb2/3)O3 (BBMN) ceramics cannot be sintered below 930 °C. However, when CuO was added to them, they were sintered even at 850 °C. The amount of the Ba2B2O5 second phase, which was formed in the BBMN ceramics decreased with the addition of CuO. Therefore, the CuO additive is considered to react with the B2O3 inhibiting the reaction between B2O3 and BaO. A dense microstructure without pores developed with the addition of a small amount of CuO. The bulk density, dielectric constant (ɛr) and Q-value increased with the addition of CuO, but decreased when a large amount of CuO was added. Excellent microwave dielectric properties were obtained for the Ba(Mg1/3Nb2/3)O3 + 2.0 mol% B2O3 + 10.0 mol% CuO ceramic sintered at 875 °C for 2 h, with values Qxf = 21 500 GHz, ɛr = 31 and temperature coefficient of resonance frequency (τf) = 21.3 ppm/°C.  相似文献   

6.
The effects of co-doped CuO and B2O3 addition on the sintering temperature, microstructure and microwave dielectric properties of MgNb2O6 ceramics prepared with conventional solid-state route were investigated. When both CuO and B2O3 were added, the MgNb2O6 ceramics were not only sintered at 1000 °C but also improved the Qf value. MgNb2O6 ceramics can be well sintered to approach to 98.1% theoretical density with 2.0 wt.% CuO–B2O3 additive due to its liquid phase effect. With 2.0 wt.% CuO–B2O3, a dielectric constant of 21.5, a Qf value of 108,000(GHz) and a τ f value of −44 ppm/°C of MgNb2O6 ceramics doped with CuO–B2O3 sintered at 1050 °C for 2 h are obtained. The variation of ε r, Qf and τ f were also explained based on the difference in microstructures.  相似文献   

7.
《Materials Research Bulletin》2006,41(10):1972-1978
The effect of V2O5 addition on the microwave dielectric properties and the microstructures of 0.4SrTiO3–0.6La(Mg0.5Ti0.5)O3 ceramics sintered for 5 h at different sintering temperature were investigated systematically. It was found that the sintering temperature was effectively lowered about 200 °C by increasing V2O5 addition content. The grain sizes, bulk density as well as microwave dielectric properties were greatly dependent on sintering temperature and V2O5 content. The 4ST–6LMT ceramics with 0.25% V2O5 sintered at 1400 °C for 5 h in air exhibited optimum microwave dielectric properties of ɛr = 50.7, Q × f = 15049.6 GHz, Tf = −1.7 ppm/°C.  相似文献   

8.
《Materials Research Bulletin》2004,39(4-5):629-636
The microstructures and the microwave dielectric properties of barium magnesium tantalate ceramics prepared by conventional mixed oxide route have been investigated. The prepared Ba(Mg1/3Ta2/3)O3 exhibited a mixture of cubic perovskite and a hexagonal superstructure with Mg and Ta showing 1:2 order in the B-site. It is found that low level doping of V2O5 (up to 0.5 wt.%) can significantly improve densification of the specimens and their microwave dielectric properties. The density of doped Ba(Mg1/3Ta2/3)O3 ceramics can be increased beyond 95% of its theoretical value by 1500 °C-sintering, which is caused by the liquid-phase effect of V2O5 addition. The detected second phase Ta2O5 was mainly the result of V5+ substitution in the ceramics. Dielectric constant (εr) and temperature coefficient of resonant frequency (τf) were not significantly affected, while the unloaded quality factors Q were effectively promoted by V2O5 addition due to the increase in B-site ordering. The εr value of 24.1, Q×f value of 149,000 (at 10 GHz) and τf value of 7.2 ppm/°C were obtained for Ba(Mg1/3Ta2/3)O3 ceramics with 0.25 wt.% V2O5 addition sintered at 1500 °C for 3 h.  相似文献   

9.
10.
研究了烧结助剂ZnO对CaO-Li2O-Sm2O3-TiO2(简写为CLST)系微波介质陶瓷的烧结特性及介电性能的影响.结果表明:ZnO的添加能有效地降低CLST陶瓷的烧结温度至1150℃.掺杂2wt%ZnO的CLST陶瓷取得了较好的介电性能:εr=84,tanδ=0.009,τf=-15ppm/℃.  相似文献   

11.
《Materials Letters》2006,60(9-10):1188-1191
The effects of Bi2O3–V2O5 additive on the microstructures, the phase formation and the microwave dielectric properties of MgTiO3 Ceramics were investigated. The Bi2O3–V2O5 addition lowered the sintering temperature of MgTiO3 ceramics effectively from 1400 to 875 °C due to the liquid-phase effect. The microwave dielectric properties were found to strongly correlate with the amount of Bi2O3–V2O5 addition. The saturated dielectric constant decreased and the maximum Qf values increased with the increasing V2O5 content, which is attributed to the variation of the second phase including Bi2Ti2O7, Bi4V1.5Ti0.5O10.85 and BiVO4. At 875 °C, MgTiO3 ceramics with 5.0 mol% Bi2O3–7 mol% V2O5 gave excellent microwave dielectric properties: εr = 20.6,Qf = 10420 GHz (6.3 GHz).  相似文献   

12.
13.
Ca2Ce2Ti5O16 dielectric ceramics prepared by conventional solid-state ceramic route was investigated. Phase composition and microwave dielectric properties were measured using XRD and Vector network analyzer, respectively. XRD analysis of the calcined and sintered samples revealed the formation of CeO2 and another unidentified phase (that vanished at ? 1400 °C) as secondary phases along with the parent Ca2Ce2Ti5O16 phase. The amount of the parent Ca2Ce2Ti5O16 phase increased with increasing sintering temperature from 1350 °C to 1450 °C accompanied by a decrease in the apparent density. The density decreased but ? r and Q u f o increased with sintering temperature. An ? r ~ 81.5, Q u f o ~ 5915 GHz and τ f ~ 219 GHz were achieved for the sample sintered at 1450 °C.  相似文献   

14.
15.
16.
17.
Single phase of Bi2Ti4O11 ceramics, which belong to meta-stable phase compounds, were synthesized by controlling the reaction time through conventional solid-state method. The effects of annealing time on phase composition of Bi2Ti4O11 ceramic powders and sintered ceramics were studied by XRD analysis. Second phase Bi2Ti2O7 appeared when the annealing time shorter than 4 h. However, pure phase of Bi2Ti4O11 powders can be formed by prolonging the annealing time to 6 h at 1,000 °C. The sintering temperatures on microstructure and microwave dielectric properties of Bi2Ti4O11 ceramics were investigated. The results show that ceramics sintered at 1,075–1,175 °C are single phase of Bi2Ti4O11 and present two different sizes of prismatic shape grains. Smaller size crystals grow into larger ones with increasing sintering temperature. The ceramics sintered at 1,125 °C reach a maximum density and have a microwave dielectric properties of εr = 51.2, Q × f = 3,050 GHz and τf = ?297 ppm/°C.  相似文献   

18.
The effect of BaCu(B2O5) (BCB) on the sinterability, microstructure and microwave dielectric properties of Ba4Sm9.33Ti18O54 (BST) has been investigated. Dilatometric measurements reveal that the sintering temperature of BST can be reduced by the addition of BCB. Microstructural analysis shows abnormal grain growth with large amount of BCB. A ceramic composite with Q × f = 4000 GHz, ?r = 52 and τf = ?29 ppm/°C which can be sintered at 950 °C is obtained when 10 wt% BCB is added to BST. EDS analysis shows that the composite is chemically compatible with silver.  相似文献   

19.

Some Li+-substituted NaCa4V5O17 ceramics were designed and fabricated by the solid-state reaction method. Effects of cation doping on the sintering behavior, crystal structure, microstructure, and dielectric properties were systematically studied. As expected, Li+ substitution effectively reduced the densification temperature of NaCa4V5O17 ceramics and lower the relative permittivity (εr), but surprisingly increased the quality factor (Q×f). A composition with 20?mol% Li+ dopants exhibits the highest Q×f?=?66,000?±?124?GHz coupled with an εr of 10.4?±?0.1 and a τf of ? 81.3?±?1.4?ppm/°C. Such compositional dependence in dielectric properties was analyzed in terms of ionic polarization and packing fraction.

  相似文献   

20.

In this study, magnesium-cobalt ferrite (Mg0.85Co0.15Fe2O4) powder was synthesized using a solid-state synthesis method, followed by the liquid sintering using 0.50–3.00 wt% vanadium oxide (V2O5) at 1050 °C for 2 h. X-ray diffraction (XRD) studies confirmed the formation of spinel ferrite. Microstructure studies revealed that by increasing the amount of V2O5 from 0.50 to 3.00 wt%, the average grain size was reduced from 15.9?±?5.9 to 7.0?±?2.5 μm and the samples were highly densified. V2O5 promoted the sintering process and reduced the dielectric constant (ε′), loss tangent (tanδ), and increased electrical resistivity. A magnesium-cobalt ferrite sample with 25.4 dielectric constant, 0.078 loss tangent, and 9.0?×?105 Ω.cm resistivity at 1 MHz was achieved using 3.00 wt% V2O5. Increasing V2O5 content caused increasing coercivity (Hc) from 89 to 129 Oe. Moreover, the maximum saturation magnetization (Ms) value of 26.8 emu/g was obtained for the sample containing 1.50 wt% V2O5. The small dielectric loss tangent of the samples at 1 MHz suggests applications of these ceramics in microwave devices.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号