首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The aim of this study was to monitor and characterise internal leachate quality at a Finnish municipal solid waste landfill (Lahti, Kujala, in operation for approximately 50 years) to provide information about its horizontal and vertical variation as well as effects of leachate recirculation on leachate quality. The study area (approximately 4 h) of the landfill had 14 monitoring wells for leachate quality monitoring over a 2-year period. The leachate was monitored for COD, BOD, TKN, NH4–N, Cl, pH and electric conductivity. The results showed high horizontal and vertical variability in leachate quality between monitoring wells, indicating that age and properties of waste, local conditions (e.g., water table) and degradation and dilution processes have a marked effect on local leachate quality. The mean COD values (642–8037 mg/l) and mean BOD/COD ratios (0.08–0.17) from the different monitoring wells were typical of landfills in the methanogenic phase of degradation. The leachate in the monitoring wells was notably more concentrated than the leachate effluent used for leachate recirculation. In the landfill as a whole the effects of the leachate recirculation on leachate quality, although difficult to distinguish from those caused by other factors, appeared to be minor during the study period.  相似文献   

2.
Advanced treatment of mature landfill leachate from a municipal landfill located in southern China (Jiangmen) was carried out in a full-scale plant using a new process. The combined process has a sequencing batch reactor (SBR) serving as the primary treatment, with polyferric sulfate (PFS) coagulation coupled with a Fenton system as secondary treatment, and a pair of upflow biological aerated filters (UBAFs) in parallel as tertiary treatment. The overall removal efficiency of chemical oxygen demand (COD) in this process was 97.3%, with an effluent COD less than 100 mg/L. Up to 99% ammonia (N–NH3) removal efficiency was achieved in the SBR, with an effluent of less than 3 mg/L, which meets the discharge standard (≤25 mg/L) with only primary treatment. The total phosphorus (TP) and suspended solids (SS) in the final effluent were reduced to less than 1 mg/L and 10 mg/L, respectively. The experience gained in the operation and maintenance will lead to a more stable performance of this combined process. An economic analysis shows that the overall operating cost of the advanced treatment was $2.70/m3. This new combination process was proved to be highly compatible and efficient in a small-scale landfill leachate treatment plant and is recommended for small-scale landfill leachate treatment plants.  相似文献   

3.
One of the most important problems with designing and maintaining a landfill is managing leachate that generated when water passes through the waste. In this study, leachate samples taken from aerobic and anaerobic landfill reactors operated with and without leachate recirculation are investigated in terms of biodegradable and non-biodegradable fractions of COD. The operation time is 600 days for anaerobic reactors and 250 days for aerobic reactors. Results of this study show that while the values of soluble inert COD to total COD in the leachate of aerobic landfill with leachate recirculation and aerobic dry reactors are determined around 40%, this rate was found around 30% in the leachate of anaerobic landfill with leachate recirculation and traditional landfill reactors. The reason for this difference is that the aerobic reactors generated much more microbial products. Because of this condition, it can be concluded that total inert COD/total COD ratios of the aerobic reactors were 60%, whereas those of anaerobic reactors were 50%. This study is important for modeling, design, and operation of landfill leachate treatment systems and determination of discharge limits.  相似文献   

4.
Ammonium removal from landfill leachate by anodic oxidation   总被引:2,自引:0,他引:2  
The feasibility of removing ammonium from landfill leachates by electrochemical oxidation was studied. Raw leachates and biologically/physico-chemically pretreated leachates from a municipal landfill site were treated. Boron doped diamond was used as anode and stainless steel as cathode, both electrodes with an area of 70 cm(2). The effects of the applied current density (15-90 mA cm(-2)), the initial ammonium concentration (480-2000 mg L(-1)), and the initial chloride concentration were experimentally studied. Total ammonium removal was obtained after 360 min of processing and almost half of the initial ammonium nitrogen was oxidized to nitrate. On the other hand, the concentration of chloride enhanced the rate of ammonium oxidation. In addition, the amount of N-NH(4)(+) transformed into N-NO(3)(-) decreased when additional chloride was provided.  相似文献   

5.
Nitrate removal from electro-oxidized landfill leachate by ion exchange   总被引:1,自引:0,他引:1  
Treatment of landfill leachates by electrochemical oxidation led to the complete removal of chemical oxygen demand and ammonium nitrogen. However, as result of the ammonium oxidation, the partial formation of nitrate ions was observed. Ion exchange technology was investigated as a polishing step in the treatment of landfill leachates. Removal of nitrate from aqueous solutions was studied using two selective anion exchangers: Purolite A 520E and Purolite A 300, under a fixed bed configuration. The following aspects of the ion exchange system were experimentally analyzed: (i) the influence of the presence of other competitive anions in solution, sulfate and chloride, during the loading step, (ii) the breakthrough point and resin saturation as a function of chloride concentration in the feed stream and, (iii) the efficiency of the regeneration step working with NaCl solutions at several concentrations. After a comparison of the experimental results, it was concluded that the resin Purolite A 300 showed a better behavior. Experimental analysis of the equilibrium isotherms made it possible to determine the equilibrium constant (K=3.21) and the maximum capacity (q(max)=183mgg(-1)), important parameters in the design of the treatment process.  相似文献   

6.
The treatment of landfill leachate by Fenton process was carried out in a continuous stirred tank reactor (CSTR). The effect of operating conditions such as reaction time, hydraulic retention time, pH, H(2)O(2) to Fe(II) molar ratio, Fenton's reagent dosage, initial COD strength, and temperature on the efficacy of Fenton process was investigated. It is demonstrated that Fenton's reagent can effectively degrade leachate organics. Fenton process reached the steady state after three times of hydraulic retention. The oxidation of organic materials in the leachate was pH dependent and the optimal pH was 2.5. The favorable H(2)O(2) to Fe(II) molar ratio was 3, and organic removal increased as dosage increased at the favorable H(2)O(2) to Fe(II) molar ratio. Temperature gave a positive effect on organic removal.  相似文献   

7.
Laboratory experiments were undertaken to investigate the treatment performances of ozonation alone and/or its combination with granular activated carbon (GAC) adsorption for raw leachate from the NENT landfill (in Hong Kong). To improve its removal of recalcitrant contaminants from the leachate, the surface of GAC was oxidized with ozone prior to treatment. With respect to ozone dose and pH, the removal of COD and/or NH(3)-N from ozonation alone and combined ozone-GAC adsorption were evaluated and compared to those of other physico-chemical treatments in some reported studies. The removal mechanism of recalcitrant compounds by ozone-GAC adsorption treatment was presented. Among the various treatments studied, the combination of ozone-GAC adsorption using ozone-modified GAC had the highest removal for COD (86%) and/or NH(3)-N (92%) compared to ozonation alone (COD: 35%; NH(3)-N: 50%) at the same initial COD and/or NH(3)-N concentrations of 8000 and 2620 mg/L, respectively. Although the integrated treatment was more effective than ozonation alone for treating stabilized leachate, the results suggested that it could not generate treated effluent that complied with the COD limit of lower than 200 mg/L and the NH(3)-N discharge standard of less than 5 mg/L. Therefore, further biological treatments to complement the degradation of the leachate are still required to meet the environmental legislation.  相似文献   

8.
This paper reports results of laboratory studies on two pretreatment methods, struvite precipitation using aeration with H3PO4 and Fenton oxidation. These methods utilized specific properties of the leachate: high magnesium content (172 mg L−1) for struvite precipitation and a high iron concentration (56 mg L−1) for Fenton treatment. Struvite precipitation (H3PO4, 700 mg L−1) removed 36% of NH3-N and 24% of SCOD. Fenton treatment (at pH 3.5) required 650 mg L−1 of H2O2 and removed 66% of SCOD. The effect of each pretreatment on the returned activated sludge (RAS) was evaluated using respirometry. Both methods reduced the inhibitory effect of the leachate and substantially increased biokinetic parameters. The BOD5/SCOD ratio increased from 0.63 for raw leachate to 0.82 (struvite) and 0.88 (Fenton). Estimation of capital and operational costs of the total leachate treatment indicated that aeration with struvite precipitation, followed by biological treatment, would be the preferred option.  相似文献   

9.
In the study, the degradation of landfill leachate by single ultrasound (sonolytic) and sonolytic combined with Fe2+ and TiO2 catalysts was carried out in laboratory conditions. The effect of pH and ultrasonic wave amplitude was also investigated in terms of color removal, total organic carbon (TOC) and chemical oxygen demand (COD) from leachate by the sonolytic degradation process. In this process, the color removal efficiency was recorded as 81.81% at 620?nm, pH?=?2.0 and 70% wave amplitude. The sonocatalytic degradation of landfill leachate accompanied by different catalysts was studied by using the 70% wave amplitude at pH?=?2.0 and room temperature for 20?min. The sonocatalytic degradation of leachate by using Fe2+ and TiO2 was found to be significantly higher than sonolytic degradation (p?2+ concentration increased from 1.0 to 3.0?mg/L, the COD and color removal of leachate significantly decreased (p?相似文献   

10.
Sorption filters based on granular activated carbon, bone meal and iron fines were tested for their efficiency of removing metals from landfill leachate. Removal of Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sr and Zn were studied in a laboratory scale setup. Activated carbon removed more than 90% of Co, Cr, Cu, Fe, Mn and Ni. Ca, Pb, Sr and Zn were removed but less efficiently. Bone meal removed over 80% of Cr, Fe, Hg, Mn and Sr and 20-80% of Al, Ca, Cu, Mo, Ni, Pb and Zn. Iron fines removed most metals (As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Pb, Sr and Zn) to some extent but less efficiently. All materials released unwanted substances (metals, TOC or nutrients), highlighting the need to study the uptake and release of a large number of compounds, not only the target metals. To remove a wide range of metals using these materials two or more filter materials may need to be combined. Sorption mechanisms for all materials include ion exchange, sorption and precipitation. For iron fines oxidation of Fe(0) seems to be important for metal immobilisation.  相似文献   

11.
垃圾渗滤液膜处理技术   总被引:11,自引:2,他引:11  
目前在国外,垃圾填埋场渗滤液膜分离技术处理工艺相当成熟,而在我国这一新技术还未得到应用和推广.总结现有的各种渗滤液膜分离技术处理工艺,并进行可行性分析,对我国今后城市垃圾卫生填埋的建设和垃圾渗滤液污染的控制具有一定的参考价值.  相似文献   

12.
碟管式反渗透(DTRO)技术在垃圾渗滤液处理中的应用   总被引:1,自引:0,他引:1  
以深圳老虎坑、上海黎明、沈阳老虎冲、大辛垃圾填埋场渗滤液处理系统为例,介绍了一种新型的反渗透技术———碟管式反渗透(DTRO),它在处理垃圾渗滤液方面有着独特的优势,出水水质稳定且能达到国家生活垃圾填埋场污染控制标准中水污染物排放控制要求.  相似文献   

13.
Treatment of landfill leachate by using electro-Fenton method   总被引:4,自引:0,他引:4  
In this study, the effects of various operating conditions such as treatment time, DC current, initial pH, initial H(2)O(2) concentration and distance between the electrodes on treatability of landfill leachate by using electro-Fenton (EF) method were examined. The settling characteristics of waste sludge produced from the treatment were also determined. According to the results, EF method can be used efficiently for the treatment of landfill leachate by using the proper operating conditions. The best removal efficiencies were obtained when: treatment duration is 20 min, constant DC current value is 3A, H(2)O(2) concentration is 2000 mg L(-1) and the initial pH value is 3. For these conditions, 72% COD, 90% color, 87% PO(4)-P and 28% NH(4)-N removals were obtained. It was also observed that using electrode distance between 1.8 cm and 2.8 cm increases efficiency of the COD removal, significantly. Sedimentation characteristics of the waste sludge produced from the EF method is fairly good.  相似文献   

14.
Young landfill leachates (LFL) collected from Djebel Chekir (Tunisia) discharge area were found to be highly loaded with organic matter, ammonia, salts, heavy metals, phenols and hydrocarbons. Despite the possibility of their biodegradability, they represent a threat to the environment and show some resistance to conventional wastewater treatment processes. For these reasons, this study attempted to develop a biological process for the treatment of LFL using selected strains of Trametes trogii, Phanerochaete chrysosporium, Lentinus tigrinus and Aspergillus niger. Experiments were undertaken at different concentrations of the effluent up to 100%. COD removal efficiencies for P. chrysosporium, T. trogii and L. tigrinus were of 68, 79 and 90%, respectively, when LFL underwent a two-fold dilution. COD abatements were accompanied with an important enzyme secretion and a high reduction in the toxicity, expressed as percent bioluminescence inhibition (%BI < 20%). Above 50% of LFL, the effluent was toxic to these strains and caused growth inhibition indicating the sensitivity of these strains to concentrated LFL. Comparatively to the other tested strains, A. niger showed to tolerate raw LFL since it grew at 100% of LFL. However, this strain is inefficient in removing phenols and hydrocarbons. Consequently, toxicity abatement was very low (%BI > 70%).  相似文献   

15.
《中国粉体技术》2019,(3):13-18
根据UASB系统的运行特点建立实验模拟系统,并对垃圾渗滤液进行水质监测与分析,掌握了渗滤液中钙离子含量的波动情况;以磷酸钠为沉淀剂,采用分布化学沉淀法处理垃圾渗滤液,使钙离子以含钙沉淀物形式进行沉淀;通过添加稀硫酸调节垃圾渗滤液的pH值后,含钙沉淀物再次形成;这些措施有效降解了垃圾渗滤液中的结垢物。结果表明,经烘干后每吨渗滤液产生的沉淀物质量达到6. 7 kg,钙去除率达到53. 6%,其实验条件为:向垃圾渗滤液添加的磷酸钠的物质的量比为n(Ca)∶n(P)=2. 5∶1,用体积比为25%的硫酸调节渗滤液清液的pH值至6,搅拌速率为300 r/min,静置时间为12 h;这些处理措施不仅减缓了装置的结垢速度以保护厌氧系统,还能够节约运行成本。  相似文献   

16.
膜分离技术在垃圾渗滤液处理中的研究与应用   总被引:5,自引:1,他引:5  
膜分离技术处理垃圾渗滤液在国外已经成熟,国内近年来也已经开始应用.系统地阐述了国内外膜分离技术在垃圾渗滤液中的研究与应用,分析了膜分离技术在垃圾渗滤液处理中的优势和不足,对膜分离技术在未来垃圾渗滤液处理中的发展前景进行了展望.  相似文献   

17.
In the present study, the coagulation of the fresh and thermally treated desizing wastewater has been reported. The maximum COD reduction of fresh desizing wastewater using coagulation was observed with commercial alum at initial pH 4. This was followed by aluminum potassium sulfate (pH 4), FeCl(3) (pH 6), PAC (pH 6) and FeSO(4) (pH 4). The maximum COD reduction observed at a coagulant (commercial alum) dose of 5 kg/m(3) and pH 4 was 58% whereas the color reduction at these conditions was 85%. The results reveal that the application of coagulation on the catalytic thermal treated effluent is more effective in removing nearly 88% of COD and 96% of color at above mentioned conditions except at a coagulant dose of 1 kg/m(3). The amount of inorganic sludge generated gets drastically reduced (almost 25%) due to the reduced amount of coagulant. The COD and color of the final effluent were found to be 98.6 mg/l and 2.67 PCU, respectively, and the COD/BOD(3) ratio was 1.36. The settling rate of the slurry was found to be strongly influenced by treatment pH. The slurry obtained after treatment at pH 12 settled faster in comparison to slurry obtained at pH 4. The filterability of the treated effluent is also strongly dependent on pH. pH 12 was adjudged to be the best in giving highest filtration rate.  相似文献   

18.
This work studied the elimination paths of the sulfonamide antibiotic sulfamethoxazole by ozonation in fast kinetic regime. The ozonation runs were performed in conditions favouring either the direct attack of the ozone molecule or the indirect attack by ozone-generated radical species with initial concentration of 0.150 mM. When doses of ozone were transferred to the liquid phase 0.2 mM, in no case did sulfamethoxazole remain in solution. Two main transformation pathways were found involving the preferential attack of molecular ozone or radical pathway and leading to the formation of six intermediates, which were identified by LC-ESI-QTOF-MS. Both routes took place simultaneously in the different conditions tested, leading to a hydroxylation reaction of the benzene ring, oxidation of the amino group on the benzene ring, oxidation of the methyl group and the double bond in the isoxazole ring and S-N bond cleavage. The most abundant reaction intermediate was that resulting from S-N bond cleavage. The toxicity of partially ozonated samples for Daphnia magna and Pseudokirchneriella subcapitata revealed the formation of toxic by-products during the early stages of reaction and the persistence of considerable toxicity after the total depletion of sulfamethoxazole.  相似文献   

19.
超滤-纳滤膜处理垃圾填埋场渗沥液   总被引:5,自引:0,他引:5  
运用锯齿膜超滤加两级卷式膜纳滤分离系统处理垃圾渗沥液,系统出水无色透明,COD总去除率99%以上,氨氮总去除率90%以上,达到国家一级排放标准.结果表明:膜法处理垃圾渗沥液的技术是切实可行的.  相似文献   

20.
The function of iron (ferric (Fe(III)) and ferrous (Fe(II))) in the hexavalent chromium (Cr(VI)) reduction mechanism by bacteria in municipal landfill leachate (MLL) was assessed. Evidence of an "electron shuttle" mechanism was observed, whereby the Cr(VI) was reduced to trivalent chromium (Cr(III)) by Fe(II) with the resulting Fe(III) bacterially re-reduced to Fe(II). Typically, investigations on this electron shuttle mechanism have been performed in an artificial medium. As MLL comprises an elaborate mixture of bacteria, humic materials and organic and inorganic species, additional complexities were evident within the cycle in this study. Bioavailability of the Fe(III) for bacterial reduction, availability of bacterially produced Fe(II) for chemical Cr(VI) reduction and hydrolysis of Fe(II) and Fe(III) become prevalent during each phase of the shuttle cycle when MLL is present. Each of these factors contributes to the overall rate of bacterial Cr(VI) reduction in this media. This work highlights the need to consider local environmental conditions when assessing the bacterial reduction of Cr(VI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号