首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本研究采用低压等离子喷涂工艺,在317L不锈钢基体上喷涂了钛涂层,制备出钛涂层的种植体。通过动物的植入实验,研究了这种种植体的生物相容性;并综合利用扫描电镜、电子探针、X射线衍射仪等分析仪器对涂层的微观结构、涂层—基体界面成分分布等进行了研究;同时也对涂层种植体的电化学性能进行了研究。结果表明,喷涂过程对不锈钢基体本身的力学性能影响很小;钛涂层结合良好,其与骨组织的生物相容性能优于未涂钛涂层的。  相似文献   

2.
The effects of thermally grown oxide (TGO) growth rate and bond coat oxidation behavior on the spallation lives of thermal barrier coatings (TBCs) have been investigated. Yttria partially stabilized zirconia (7YSZ) coatings have been applied to various bond coat/superalloy substrate combinations using the Solution Precursor Plasma Spray (SPPS) process. The coatings have been furnace thermal cycled at 1121 °C, using one hour cycles. A large variation in the spallation lives, from 125 to 1230 cycles, has been observed and are attributed to (a) the spatially averaged TGO growth rate, (b) the maximum localized TGO thickness, (c) the formation of non-alumina oxides with weak interfaces, and (d) the formation of yttrium aluminate stringers in low pressure plasma spray (LPPS) processed bond coat. Of these four factors, the average TGO thickness is the most important. Surprisingly vacuum plasma sprayed bond coated samples consistently had shorter cyclic live compared to air plasma sprayed bond coated samples.  相似文献   

3.
Advanced high-energy plasma systems are being used to achieve the benefits of the high-velocity oxy-fuel (HVOF) system without losing the inherent advantages of plasma for coating of gas turbine parts. MCrAlY coatings play a very important role in the performance and reliability of gas turbine components. One of the important considerations for next generation of gas turbines, which have more demanding conditions and need to withstand ever increasing operating temperatures, is that they should possess very low oxygen content levels in the coating. Low oxygen content coatings are applied by the expensive low-pressure plasma spray (LPPS)/vacuum plasma spray (VPS) technique for critical components in aero- and land-based gas turbines. This work deals with the development of low-cost LPPS equivalent coatings (having low oxygen content) using the high-energy high-velocity plasma spray (HEHVPS) gun and inert gas shroud. A comparison has also been made with CoNiCrAlY coatings by HVOF.  相似文献   

4.
热喷涂NiCoCrAlYTa+7YSZ热障涂层颗粒沉积行为   总被引:1,自引:0,他引:1  
分别采用低压等离子喷涂和大气等离子喷涂在K4169基体上收集了NiCoCrAlYTa颗粒沉积物及涂层,并对颗粒沉积物的形貌及涂层性能进行了观察分析。结果表明:低压等离子喷涂收集到的单个NiCoCrAlYTa扁平颗粒主要呈圆盘状,涂层致密且氧含量低。而大气等离子喷涂收集到的扁平颗粒主要呈溅射状,涂层孔隙率和氧含量均较高。又在经镜面抛光的NiCoCrAlYTa涂层和K4169基体上分别收集了7YSZ颗粒沉积物,并对其沉积形貌进行了观察分析,结果表明:在K4169基体上收集到的7YSZ颗粒沉积物主要呈圆盘状,表面存在大量的网状微裂纹及宏观环状贯通裂纹。在镜面抛光的NiCoCrAlYTa涂层表面收集的7YSZ颗粒沉积物,周围有少量的指状溅射物,中心部存在一定数量的网状微裂纹,但宏观环状裂纹消失。  相似文献   

5.
采用原子比1:1的Ni和Ti为原料,通过冷喷涂(CS)和低压等离子喷涂(LPPS)制备了Ni-Ti复合涂层,研究喷涂工艺对涂层的组织(孔隙率、相组成和显微组织)和性能(硬度、耐磨性和耐蚀性)的影响。结果表明:两种涂层均未发生明显的氧化,但表现出不同的组织结构。高速碰撞后的颗粒发生严重塑性变形使CS涂层具有低的孔隙率,且XRD未检测到其它的相生成;层片状结构的LPPS涂层内部形成了Ni-Ti金属间化合物相,其表现出高的显微硬度和低的磨损率。此外,LPPS涂层高的腐蚀电位和低的腐蚀电流密度,表明其高的耐蚀性。  相似文献   

6.
The mechanical properties of a MCrAlY coating significantly influence the initiation of cracks in the superalloy substrate under thermomechanical-fatigue conditions. Previous studies have developed a convenient method for evaluating the mechanical properties of sprayed coatings by lateral compression of a circular tube coating. This method does not need chucking, and manufacturing the free-standing coating is quite straightforward. In this study, the mechanical properties of the free-standing CoNiCrAlY coatings prepared using low-pressure plasma spraying (LPPS), high-velocity oxyfuel (HVOF) spraying, and atmospheric plasma spraying (APS) were systematically measured with the lateral compression method at room temperature through to 920 °C. The effect of postspray thermal treatments, in vacuum and in air, on the mechanical properties was investigated in the 400 to 1100 °C temperature range. It was found that high-temperature thermal treatment in air was effective in increasing the bending strength and Young’s modulus. It was especially effective on the APS coatings, which were produced using powders with average size 60 μm, and on HVOF coating, whose bending strengths increased by approximately three times. On the contrary, the enhancement in the LPPS and APS coatings produced with powders 21 μm in size was found to be approximately 1.6 times.  相似文献   

7.
与常规等离子喷涂相比,低压等离子喷涂技术在真空或低压下进行等离子喷涂,可制备更低杂质、更高致密度、更高结合强度的涂层。介绍了常规等离子喷涂焰流速度高、工艺稳定性好、沉积效率高、可控性好的特点,详细阐述了低压等离子喷涂技术清洁、高速、长焰流、预热、电清理的工艺优势,说明了低压等离子喷涂技术在热障涂层、抗气蚀涂层、面向等离子体材料等功能性涂层制备上的应用,最后从完善相关理论、与其他技术联用、工艺在线可控、气氛压力更低等方面,以及在航空、航天、电子等领域的运用,对低压等离子喷涂技术的发展进行了展望。  相似文献   

8.
The recently discovered Cr-stabilized cubic titanium trialuminides of the form (Al,Cr)3Ti exhibit excellent oxidation resistance up to 1200 °C and have formed the basis for development of a new family of protective coatings. These intermetallic compounds can be fabricated into powders and thermal spray coatings much the same as traditional metal alloys. Cubic trialuminide coatings have physical properties that are compatible with a variety of common engineering materials, including alloys based on Ti, TiAl, Fe, Ni, and Al. Typically, the coatings will impart sufficient protection to permit an increase in the service temperature of a substrate alloy by 150 °C, or more. The purpose here is to summarize the development of these new thermal spray coatings, including properties and microstructures, as well as performance of the coating on various substrates. A brief comparison is made between the deposition processes used to date, which include low-pressure plasma spray (LPPS), air plasma spray (APS), and high-velocity oxy-fuel (HVOF) deposition. Recent successes in modifying the coatings to a composite form by incorporating a very fine dispersion of nanoscale carbide particles are also discussed.  相似文献   

9.
The thermal fatigue behavior of thermal barrier coatings (TBCs) with the NiCoCrAlTaY bond coats deposited by cold spraying and low-pressure plasma spraying (LPPS) was examined through thermal cyclic test. The TBCs were subjected to the pre-oxidation before the test in an Ar atmosphere. The results show that a more uniform TGO in both thickness and composition forms on the cold-sprayed bond coat than that deposited by LPPS. The TBCs with the cold-sprayed bond coat exhibit a longer thermal cyclic lifetime than that with the LPPS bond coat. The differences in oxidation behavior and thermal cyclic behavior between two TBCs were discussed based on the evident difference in the surface morphology of two MCrAlY bond coats deposited by cold spraying and LPPS.  相似文献   

10.
A Fe-17Cr-38Mo-4C alloy powder was plasma sprayed by three processes: an 80 kW low-pressure plasma spray (LPPS), a 250 kW high-energy plasma spray (HPS), and a 40 kW conventional plasma spray (APS). The as-sprayed coating obtained by the LPPS process is composed of only amorphous phase. As-sprayed coatings obtained by the HPS and APS processes are a mixture of amorphous and crystalline phases. The three as-sprayed coatings exhibit a high hardness of 1000 to 1100 DPN. The amorphous phase in these coatings crystallizes at a high temperature of about 920 K. A very fine structure composed of hard ϰ-phase and carbides is formed after crystallization. The hardness of the coating obtained by LPPS reaches a maximum of 1450 DPN just after crystallization on tempering and retains a high hardness more than 1300 DPN after tempering at high temperatures of 1173 or 1273 K. The corrosion potential of the amorphous coating is the highest among the three coatings and higher than that of a SUS316L stainless steel coating. The anodic polarization measurements infer that the corrosion resistance of the amorphous coating is superior or comparable to SUS316L stainless steel coating in H2SO4 solution.  相似文献   

11.
To improve the corrosion resistance and to study the effect of yttrium in the behavior of coatings produced by thermal spraying MCrAlY (M=Ni, Co) powders, CO2 laser processing was conducted. Three methods were used: (1) a combination of gas flame and plasma spraying in air followed by laser glazing in argon, (2) low-pressure plasma spraying (LPPS) and laser glazing in argon, and (3) LPPS and laser-gas (O2) alloying. Laser glazing in argon of the MCrAlY coatings sprayed in air promoted formation of weakly adherent agglomerates of Al–Y oxides and an alumina-chromia solid solution. Glazing in argon atmosphere of LPPS CoNiCrAlY and NiCrAlY coatings caused the formation of nickel aluminides besides the formation of Y–Al compounds. Gas (O2)-alloying of these coatings produces continuous and adherent (yttrium-containing) alumina and chromia layers. The effects of yttrium on the characteristics of the oxides formed in the coatings during laser glazing, laser-gas alloying, and high-temperature oxidation is discussed. This work also investigated the oxidation resistance of the laser-processed MCrAlY coatings in air and in the presence of 85 mol/o V2O5–Na2SO4 fused salt at 900°C.  相似文献   

12.
Ti(C, N)-TiB2 composite coatings were deposited by means of reactive low pressure plasma spraying (LPPS) based on the technology of self-propagating high-temperature synthesis (SHS). The original powders were mixtures of Ti and B4C powders. The powders were mixed by ball mill and then spray-dried and at last sintered to be suitable for spraying. Two spraying distances were selected for LPPS. Scanning electron microscopy (SEM) was used to investigate the morphologies of powders for spraying and the microstru...  相似文献   

13.
Alloys of Fe-10Cr-10Mo containing a large amount of carbon and/or boron were plasma sprayed by low-pressure plasma spraying (LPPS) and high-energy plasma spraying (HPS). The as-sprayed coatings obtained by the LPPS process are composed of only an amorphous phase, while as-sprayed coatings obtained by the HPS process are a mixture of amorphous and crystalline phases. The amorphous phase in these coatings crystallizes on tempering at about 773 to 873 K, and the crystallization temperatures depend on the content of carbon and boron. Thermal stability of the amorphous phase containing boron is higher than those phases containing carbon. A very fine mixed structure of ferrite and carbide, borocarbide, or boride is formed by decomposition of the amorphous phase, bringing about a hardness of 1200 to 1400 DPN (Vickers hardness). The coatings containing carbon retain a hardness of more than 1000 DPN, even on tempering at temperatures of 1073 K or higher. The anodic polarization behavior of the coatings exhibits an activation-passivation transition in 1N H2SO4 solution. The active and passive current densities of the as-sprayed amorphous and tempered crystalline coatings containing carbon is lower than the coatings containing boron. The corrosion resistance of the as-sprayed and crystallized coatings containing carbon is superior to a SUS316L stainless steel coating.  相似文献   

14.
研究了用高速火焰喷涂(HVOF)替代低压等离子喷涂(LPPS)沉积高质量的MCrAlY涂层。试验用粉料为NiCoCrAlTaReSiY,采用以煤油为燃料的K2型HVOF系统沉积涂层,研究喷嘴长度、喷涂工艺参数对粉末沉积工艺过程以及涂层性能的影响;测量涂层的孔隙率及氧含量,观察涂层经真空热处理以及高温空气氧化后的显微结构,测量了Al、O等元素在氧化涂层中的分布。结果表明,所沉积的NiCoCrAlTaReSiY涂层具有优越的抗氧化性。  相似文献   

15.
Plasma spray—physical vapor deposition (PS-PVD) is a low pressure plasma spray technology to deposit coatings out of the vapor phase. PS-PVD is a part of the family of new hybrid processes recently developed by Sulzer Metco AG (Switzerland) on the basis of the well-established low pressure plasma spraying (LPPS) technology. Included in this new process family are plasma spray—chemical vapor deposition (PS-CVD) and plasma spray—thin film (PS-TF) processes. In comparison to conventional vacuum plasma spraying and LPPS, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and EB-PVD coatings. This paper reports on the progress made at Sulzer Metco to develop functional coatings build up from vapor phase of oxide ceramics and metals.  相似文献   

16.
In this study, a novel liquid precursor plasma spraying (LPPS) process was used to deposit Si, Mg, CO3 2− substituted hydroxyapatite (HA) coatings (alone and cosubstituted) onto Ti-6Al-4V substrates. Salts of silicon, magnesium, and carbonate elements were directly added into the HA liquid precursor for subsequent plasma spraying. The phase composition, structure, and morphology of all HA coatings were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the trace elements were successfully incorporated into the HA structure and nanostructured coatings were obtained for all doped HA formulations. The incorporation of trace elements into the HA structure reduced its crystallinity, especially when silicon, magnesium and carbonate ions entered simultaneously into the HA structure. FTIR spectra showed that the Si-HA and Mg-HA coatings had decreased intensities in both the O-H and P-O bands and that the CO3 2−-HA coating was mainly a B-type carbonate-substituted HA. The results showed that the LPPS process is an effective and simple method to synthesize trace element substituted biomimetic HA coatings with nanostructure.  相似文献   

17.
Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion resistance but also the simultaneous coverage of multiple air foils.  相似文献   

18.
利用自制的高速刮擦试验机,对常见的铝、镍基封严涂层与TC4钛合叶片组成的封严摩擦副在高速刮擦条件下的摩擦学行为进行了研究。结果显示,铝基封严涂层对于叶片磨损轻微,甚至出现涂层粘着叶片的现象;镍基封严涂层严重的损伤叶片。通过分析刮擦面温度与力学性能变化间关系,发现封严涂层的热物性能对叶片的损伤具有重要的影响。若封严涂层的金属相熔点较低、热扩散率较大如铝基封严涂层,则配副使用时涂层易先于叶片发生软化,因而叶片磨损轻微,甚至被涂层粘附所代替。若封严涂层的金属相熔点较高、热扩散率较低如镍基封严涂层,则叶片易先于涂层发生软化,因而叶片损伤严重。  相似文献   

19.
Previous studies on the oxidation behavior of two superalloys, IN100 and CMSX2, protected by LPPS MCrAlYTa coatings, were the basis to relate the high-temperature oxidation resistance to the oxidation stresses. Details are given on the choice of the X-ray diffraction conditions and on the calculations of the crystallographic elastic constants of each phase studied. Dilatometric tests were used to determine the expansion coefficient of the coatings and substrates; a difference in expansion creates stresses during cooling. It has not been possible to determine the Al2O3 oxidation stresses by X-ray diffraction on such systems. Calculations give an Al2O3 stress which agrees with values found by other authors in Al2O3, NiO, or Cr2O3, taking into account the differences in expansion coefficients of the various systems. The as-sprayed coatings are subjected to tensile stresses, due to the between the coating and the substrate. During oxidation, these stresses decrease, owing mainly to the interdiffusion phenomena between the coating and its substrate. This confirms that the more resistant system must consist of CoNiCrAlYTa-coated IN100.  相似文献   

20.
An alloy of Fe-10Cr-13P-7C was thermally sprayed by three different processes: (1) 80 kW low-pressure plasma spraying (LPPS), (2) high-velocity oxyfuel (HVOF) spraying, and (3) 250 kW high-energy plasma spraying (HPS). The as-sprayed coating obtained by the LPPS process was composed of an amorphous phase. In contrast, the as-sprayed coatings obtained by the HVOF and HPS processes were a mixture of amorphous and crystalline phases. The as-sprayed coatings showed a high hardness of 700 DPN. A very fine structure composed of ferrite, carbide, and phosphide was formed, producing a maximum hardness of greater than 1000 DPN in the LPPS coating just after crystallization on tempering. The corrosion re-sistance of the amorphous coating was superior to a SUS316L stainless steel coating in 1N H2SO4 solution and 1N HC1 solution. Furthermore, the amorphous coating underwent neither general nor pitting corro sion in1NUCI solution and 6% FeCl3 6H2O solution containing 0.05N HCl, whereas the SUS316L stain less steel coating was attacked aggressively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号