首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Al-Zn-Sn-Ga阳极腐蚀过程的电化学阻抗谱   总被引:2,自引:0,他引:2  
通过测定Al-Zn-Sn-Ga阳极在3.5%NaCl(质量分数)溶液中浸泡不同时间的电化学阻抗谱(EIS),研究该阳极的腐蚀发展过程和腐蚀特征。结果显示:当合金刚被浸入3.5%NaCl溶液时,EIS谱为反应电阻很大的容抗弧,表明此时合金处于钝化态;随着浸泡时间的延长,EIS谱中高频段的容抗弧明显减小且低频段出现感抗弧,合金进入点蚀期;继续延长浸泡时间,EIS谱中除高频段的容抗弧和中、低频段感抗弧外,在低频段出现另一容抗弧,合金处于点蚀扩展期;随着浸泡时间的继续增加,低频段感抗弧消失,EIS谱由两个容抗弧组成,合金达到均匀腐蚀期。因此,合金的腐蚀由钝化态开始,经点蚀期和点蚀扩展期,达到均匀腐蚀期。  相似文献   

2.
NaCl溶液中Al-Li合金腐蚀过程的电化学特征   总被引:7,自引:0,他引:7  
采用电化学噪声技术,结合电化学阻抗谱及极化曲线测量,研究了峰时效,AA2195-T8铝合金在3.0%NaCl溶液中的腐蚀电化学特征,结果表明,腐蚀初期,合金表面钝化膜上不断有孔核的形成与恢复,并导致阻抗谱上感抗成分的存在。随腐蚀时间的延长,其感抗成分消失且阻抗模值降低。阳极极化时,由于其孔蚀电位与自腐蚀电位接近,钝化电位区间很小;随腐蚀时间的延长,极化电阻先增加而后减小,自腐蚀电流则呈相反趋势变化。  相似文献   

3.
采用动电位阳极极化法对17%SiCp/2024Al基复合材料及其基体合金在3.5%NaCl水溶液中的耐蚀性进行了研究.结果表明:SiC颗粒的加入并不影响SiCp/2024Al基复合材料的点蚀敏感性,但与基体相比,其耐蚀性有所下降.对极化后和长期浸泡试样的腐蚀形貌观察发现:与基体相比,SiCp/2024Al基复合材料表面上的蚀孔数量相对较多,蚀孔尺寸稍小,大小分布不均匀;最大蚀孔较深,并有严重的裂缝腐蚀;裂缝腐蚀的存在会使SiCp/2024Al基复合材料的点蚀抗力明显降低.能谱分析表明:SiCp/2024Al基复合材料的腐蚀机制为富Cu阴极相与贫Cu阳极相间的电偶腐蚀,另外,SiC与Al间也存在电偶腐蚀倾向.  相似文献   

4.
The susceptibility to pitting corrosion of AA2024-T4, AA7075-T651 and AA7475-T761 aluminium alloys was investigated in aqueous neutral chloride solution for the purpose of comparison using electrochemical noise measurement. The experimentally measured electrochemical noises were analysed based upon the combined stochastic theory and shot-noise theory using the Weibull distribution function. From the occurrence of two linear regions on one Weibull probability plot, it was suggested that there existed two stochastic processes of uniform corrosion and pitting corrosion; pitting corrosion was distinguished from uniform corrosion in terms of the frequency of events in the stochastic analysis. Accordingly, the present analysis method allowed us to investigate pitting corrosion independently. The susceptibility to pitting corrosion was appropriately evaluated by determining pit embryo formation rate in the stochastic analysis. The susceptibility was decreased in the following order: AA2024-T4 (the naturally aged condition), AA7475-T761 (the overaged condition) and AA7075-T651 (the near-peak-aged condition).  相似文献   

5.
Lap joints fabricated using Al2024T3/commercially pure Ag sheet couples with nylon fasteners were exposed to standard field tests in a tropical marine atmosphere for a total period of six months. Atmospheric conditions were recorded using a weather monitoring station. Simultaneously, samples were also exposed in a salt spray chamber according to ASTM B117 and GM 9540P standards. Corrosion data was obtained for monthly intervals for both field and laboratory samples. Weight loss, pitting characteristics and the nature of the corrosion products were evaluated. Corrosion mechanisms based on the observed atmospheric corrosion phenomena are proposed.  相似文献   

6.
Spontaneous electrochemical noise (EN) can be a rich source of information concerning the processes simultaneously occurring at a corroding interface. Potential noise fluctuations during the free corrosion of pure aluminum in different concentration of neutral sodium chloride solution are investigated, and the breakdown and restoration of passive metal's film are studied using potentiodynamic scanning (PDS) measurements and electrochemical impedance spectroscopy (EIS) technique. Two capacitance loops are observed in the Nyquist plots in two kinds of concentration, and the corrosion process is under activation control at first, then become diffusion control within the oxide film and corrosion products of (Al(OH)p-mCl-m) accumulated on the surface of the corroding electrode. It is suggested that the pitting corrosion is much easier to occur for pure aluminum in 7.0wt% than in 2.0wt% NaCl solution, and the high concentration of chloride ion in solution inhibits the repassivation of a metastable pit. The co  相似文献   

7.
The variation of the critical pitting potential of a zincalloy was studied in aerated NaOH solutions as a function of the concentration of the aggressive ions, Cl?, Br? and I?. Curves with segmented nature were obtained when Epitting was plotted versus logarithm of the halogen ion concentrations. Initiation of pitting corrosion was discussed on the basis of formation of complex halo-compounds with the oxides/hydroxides that constitute the passive surface film. Addition of chromate, phosphate and carbonate ions to the halogen-containing solutions causes the shift of the critical pitting potential in the noble direction, accounting for increased resistance to pitting attack. Nitrite-ion additions contribute with the halogen ions in the destruction of the passive film. Sufficient concentrations of the carbonate ions cause complete inhibition of pitting corrosion.  相似文献   

8.
In this work, effects of coolant chemistry, including concentrations of chloride ions and ethylene glycol and addition of various ions, on corrosion of 3003 Al alloy were investigated by electrochemical impedance spectroscopy measurements and scanning electron microscopy characterization. In chloride‐free, ethylene glycol–water solution, a layer of Al‐alcohol film is proposed to form on the electrode surface. With the increase of ethylene glycol concentration, more Al‐alcohol film is formed, resulting in the increase in film resistance and charge‐transfer resistance. In the presence of Cl? ions, they would be involved in the film formation, decreasing the stability of the film. In 50% ethylene glycol–water solution, the threshold value of Cl? concentration for pitting initiation is within the range of 100 ppm to 0.01 M. When the ethylene glycol concentration increases to 70%, the threshold Cl? concentration for pitting is from 0.01 to 0.1 M. In 100% ethylene glycol, there is no pitting of 3003 Al alloy even at 0.1 M of Cl?. Even a trace amount of impurity cation could affect significantly the corrosion behavior of 3003 Al alloy in ethylene glycol–water solution. Addition of Zn2+ is capable of increasing the corrosion resistance of Al alloy electrode, while Cu2+ ions containing in the solution would enhance corrosion, especially pitting corrosion, of Al alloy. The effect of Mg2+ on Al alloy corrosion is only slight.  相似文献   

9.
TiNi及Co合金生物医用材料的腐蚀行为及血液相容性   总被引:5,自引:0,他引:5  
采用线性极化技术测量了生物医用材料TiNi形状记忆合金, CoCrNiMo和CoCrNiW的腐蚀速率, 并用动态电位扫描法考察了其阳极极化行为. 结果表明, 3种合金钝化电位区宽, 维钝电流密度小, 显示出优异的耐全面腐蚀性能. 电位扫描曲线滞后环面积及腐蚀后扫描电镜观察显示, 两种钴合金具有良好的耐孔蚀性能, 而TiNi的孔蚀倾向较大, 这是因为在TiNi合金表面夹杂的Ti2Ni易受活性阴离子的浸蚀, 而钴合金中的Co, Cr, Mo和W均易在表面形成钝性氧化膜, 抑制孔蚀的发生. 接触角、动态凝血时间和溶血率的测定表明TiNi具有更优的血液相容性, 这可能与其表面的TiO2膜具有较小的表面张力有关.  相似文献   

10.
The corrosion behavior of 28Cr-7Ni-O-0.34N duplex stainless steels in air-saturated 3.5-wt% NaCl solution at pH 2, 7, 10 and 27 °C was studied by the potentiodynamic method. Two types of microstructures were investigated: the as-forged duplex and microduplex (average austenite grain size 5-16 μm) structures. The austenite volume fractions of the tested steels were between 0.35 and 0.64. The nitrogen effect on corrosion behaviors of both duplex and microduplex stainless steels were the same. At pH 2, the corrosion potential increased when the nitrogen content increased, however, corrosion current density as well as corrosion rate decreased. At pH 7 and 10, the effect of nitrogen on corrosion potential and corrosion rate could not be observed. Corrosion potential at pH 10 was lower than at pH 7. Pitting potential increased when the nitrogen content in the tested steels increased at all tested pH. For the nitrogen effect on the passive current density, it seemed that only at pH 2, the average passive current densities reduced when the nitrogen content increased. Nitrogen may have participated in the passive film or has been involved in the reaction to build up passive film. The ammonium formation and nitrogen enrichment at the interface metal/passive film with adsorption mechanism were discussed. The dissolute nitrogen might have combined with the hydrogen ions in solution to form ammonium ions, resulting in increasing solution pH. The steel could then easily repassivate, hence the corrosion potential and pitting potential would increase. However, the ammonium formation mechanism could not explain the decrease of corrosion potential in basic solution. Nitrogen enrichment at the metal/passive film interface with adsorption mechanism seemed to be an applicable consideration in increasing pitting potential. However, this mechanism did not involve the ammonium ion formation. In general, for the duplex and microduplex stainless steels tested, nitrogen increased the general corrosion resistances in acid solution and pitting corrosion resistance at all solution pH. Metallographic observation in both tested duplex and microduplex steels after pitting corrosion at all tested pH revealed that, the corroded structure in the tested steels without nitrogen alloying was austenite, but those with nitrogen alloying was ferrite. Even though ferrite had a higher chromium content than austenite but higher dissolved nitrogen in austenite than in ferrite may have increased the pitting resistance equivalent number (PRE) of austenite to be higher than that of ferrite.  相似文献   

11.
The importance of live biofilms in corrosion protection   总被引:1,自引:0,他引:1  
As observed before, Al 2024 was passive in artificial seawater (AS) in the presence of a protective biofilm of Bacillus subtilis WB600. When antibiotics were added to the AS to kill the bacteria in the biofilm, pitting occurred within a few hours as indicated by characteristic changes in the impedance spectra. The corrosion potential Ecorr decreased at the same time to values observed in sterile AS. Addition of the antibiotics to sterile AS had no effect on corrosion behavior.  相似文献   

12.
The effect of mischmetal (Mm) on the corrosion properties of Mg–5Al alloy was investigated by electrochemical techniques in 0.01 M NaCl solution as the alkaline condition (pH 12) and surface analyses. The electrochemical tests indicated that the pitting potential, time to pitting initiation, and charge transfer resistance of the Mg–5Al specimens increased with increasing Mm content. Surface analyses indicated that Mm promoted the formation of passive film in the absence of Mm products. In addition, the benefits of Mm addition are the refinement of the precipitates and reduction in grain size.  相似文献   

13.
A comparative analysis of the currently existing criteria for the pitting resistance of stainless steels and the proposed criterion based on the formation potential of a salt film is carried out. The formation potential of the salt film is shown to provide an explanation of the current oscillations, which are a typical feature of pitting corrosion, as well as to fairly accurately predict the pitting-resistance ranges of stainless steels. The combination of the existing and proposed criteria for pitting resistance enabled us to more accurately distinguish the three possible states of a passive film, namely, the range of a passive state or stable passivity where the probability of the formation and development of the earlier appeared pits equals zero, the range of a meta-stable state or instable passivity where the existence probability of the earlier formed pits and the nucleation probability of repassivating pits are nonzero, and the range of pit formation where the formation and stable growth of pits are possible.  相似文献   

14.
X70高钢级管线钢焊接接头盐雾腐蚀机理   总被引:2,自引:2,他引:0       下载免费PDF全文
利用中性盐雾试验对X70高钢级管线钢焊接接头进行室温腐蚀,通过扫描电镜和能谱仪观察了X70管线钢焊接接头盐雾腐蚀前后表面微观形貌和化学元素的变化,并采用EDS对盐雾腐蚀后焊接接头表面进行了面扫描分析. 利用XRD讨论了其盐雾腐蚀前后表面物相,分析了X70管线钢焊接接头盐雾腐蚀后表面腐蚀膜的组成、作用和腐蚀机理. 结果表明,盐雾腐蚀后失效主要形式是点蚀和剥落腐蚀,活性Cl-离子破坏了试样表面的钝化膜,与Fe原子接触,是发生点蚀的主要原因;焊接过程中产生的残余拉应力成为腐蚀的应力源,使材料在腐蚀介质中发生应力腐蚀开裂,在与晶间腐蚀共同作用下发生剥落腐蚀;腐蚀膜达到一定厚度后覆盖在试样表面,阻隔试样与腐蚀介质的接触,有利于抑制腐蚀的持续进行.  相似文献   

15.
The mechanisms of corrosion inhibition of AA2024-T3 by vanadates were studied using chronoamperometry, polarization curves and adsorption isotherms. The electrochemical behaviour of clear solutions containing metavanadates and orange solutions containing decavanadates was clearly distinctive. Metavanadates reduced the kinetics of oxygen reduction to an extent similar to chromates. Corrosion inhibition of AA2024-T3 by metavanadates was very rapid and it might occur by the formation of an adsorbed layer. Reduction of clear metavanadate solution was very slow. Approximately 35 min were required to develop a monolayer of a reduced vanadate species. The adsorption of the inhibitor likely blocked reactive sites on intermetallic particles, discouraging the oxygen reduction reaction (ORR). Adsorption of the inhibitor on the Al matrix could also displace Cl ions, increasing the stability of the passive film and reducing the breakdown of S-phase particles. In contrast, decavanadates were shown to be poor inhibitors of the ORR. A sharp current spike was observed after injection of decavanadates for both Cu and AA2024-T3 at various applied cathodic potentials. Integration of the current peaks suggested the formation of several monolayers of a reduced vanadate species. The formation of several monolayers was in line with the poor performance of decavanadates as inhibitors of AA2024-T3 corrosion.  相似文献   

16.
In the present paper, studies were conducted on AISI Type 316 stainless steel (SS) in deaerated solutions of sodium sulfate as well as sodium chloride to establish the effect of sulfate and chloride ions on the electrochemical corrosion behavior of the material. The experiments were conducted in deaerated solutions of 0.5 M sodium sulfate as well as 0.5 M sodium chloride using electrochemical noise (EN) technique at open circuit potential (OCP) to collect the correlated current and potential signals. Visual records of the current and potential, analysis of data to arrive at the statistical parameters, spectral density estimation using the maximum entropy method (MEM) showed that sulfate ions were incorporated in the passive film to strengthen the same. However, the adsorption of chloride ions resulted in pitting corrosion thereby adversely affecting noise resistance (R N). Distinct current and potential signals were observed for metastable pitting, stable pitting and passive film build-up. Distinct changes in the values of the statistical parameters like R N and the spectral noise resistance at zero frequency (R°SN) revealed adsorption and incorporation of sulfate and chloride ions on the passive film/solution interface.  相似文献   

17.
A typical aluminum alloy, AA7075, was immersed in the EXCO solution, and its corrosion properties during different immersion time were measured repetitively using electrochemical impedance spectroscopy technique (EIS). The EIS data a were simulated using equivalent circuit with ZView program. The results show that once the exfoliation occurs, the low frequency inductive loop in the Nyquist plot associated with the relaxation phenomenon of reaction intermediates disappears, and the Nyquist plane is mainly composed of two capacitive arcs in the high frequency range and low frequency range respectively. The former originates from the original corroded surface, while the latter from the newly formed interface by exfoliation corrosion (EXCO). With the increased immersion time, the high frequency capacitance arc decreases gradually, while the low frequency capacitance arc increases gradually. From the beginning of immersion up to 9 hours, charge transfer resistance gradually decreases, illustrating the acceleration of the corrosion rate, whereas the proton concentration decreases steeply, indicating the cathodic process is pre‐dominant. Then the corrosion rate decreases gradually corresponding to the exhausting of proton ions. The results also show that the exfoliation corrosion is developed from pitting corrosion through intergranular corrosion to general corrosion at the end.  相似文献   

18.
目的研究0359铝合金的腐蚀行为,对其腐蚀使用寿命进行预测。方法采用盐雾实验模拟海洋大气环境,对腐蚀试样进行SEM、EDS、腐蚀深度、腐蚀失重、极化曲线和阻抗分析。结果 0359铝合金在盐雾腐蚀实验的条件下,腐蚀产物主要含O、Al、Si。随腐蚀时间延长,腐蚀点增多,腐蚀产物增多,且部分溶解脱落,腐蚀失重增加,腐蚀坑增大、加深。腐蚀时间由8 h逐渐增加至72 h,自腐蚀电位由-852.859 m V负移至-966.046 m V,腐蚀电流密度由0.346μA/cm~2增大至3.971μA/cm~2,腐蚀阻抗降低,腐蚀速率增加。腐蚀96 h时,自腐蚀电位正移,腐蚀电流密度减小,腐蚀阻抗增加,腐蚀速率降低。0359铝合金腐蚀失重-时间拟合曲线为y1=0.1927t~(0.6997),LC4铝合金在万宁地区户外暴露10年的腐蚀拟合失重为3.2629 g/m~2,此时,0359铝合金户外腐蚀10年的当量腐蚀深度为43.80μm,为翘片厚度的17.52%。结论 0359铝合金腐蚀形貌表现为点蚀,Al发生了吸氧腐蚀。腐蚀初期,0359铝合金表面的钝化膜阻碍了腐蚀,随腐蚀时间增加,钝化膜逐渐被破坏,腐蚀速率增加;腐蚀后期,大量腐蚀产物覆盖,阻碍了O、Cl-与铝合金的接触,降低了腐蚀速率。0359铝合金表面钝化膜和腐蚀产物具有减缓腐蚀的作用,且0359铝合金满足10年以上使用寿命。  相似文献   

19.
Cu–Al composite plate corrosion tests, under a 0–100 A AC current, were conducted for 48 hr in a neutral salt spray. The morphology and corrosion products were studied by scanning electron microscope and X-ray powder diffraction, through which the effect of the current was analyzed. Meanwhile, the rate and degree of corrosion were evaluated by weight loss, electrochemical and electrolytic conductivity detection methods. The results showed that when the current increased, the corrosion rate initially increased and then decreased. When the current value was 50 A, the corrosion rate was the highest. The corrosion of the Cu–Al composite plate mainly included galvanic corrosion at the interface and pitting on the aluminum matrix, with no corrosion on the copper matrix. The state of the passivation film changed to loose, peeling, rupture, accumulation, compact, and so on when the current value increased. The type of corrosion product was not affected by the current value. The current affects the electromobility of the chloride ions by influencing the conductivity of the corrosion medium. The higher the electromobility of the chloride ions, the less the destruction of the passivation film and as a result, there is a decreased rate and degree of corrosion.  相似文献   

20.
利用交流阻抗技术(EIS)研究了N80油套管钢在0.5 mol/L NaHCO3溶液中所成转化膜的电化学性能,用莫特-肖特基曲线分析了成膜电位、测试频率及Cl-浓度对转化膜半导体性能的影响.结果表明:转化膜呈n型半导体特征;随成膜电位增加,膜的容抗和施主密度减小;随Cl-浓度增加,膜的容抗和施主密度增加,膜的点蚀加剧.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号