首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two‐tier heterogeneous networks (HetNets), formed by deploying small cell base stations (SBSs) over existing macrocells, can enhance the network performance in future fifth generation network. However, the cross‐/co‐tier interference in HetNets also will severely influence the user throughput of both tiers. In this paper, we investigate the resource allocation and interference mitigation problem in cluster based orthogonal frequency division multiple access (OFDMA) two‐tier HetNets. In a typical cluster, one SBS is selected as the cluster head to allocate resources among all small cells to guarantee their throughput requirements. Hybrid access policy enables small cells to suppress the cross‐tier interference and earn additional revenue from macrocells, but it also leads to decrease of available resources for small cell users (SUs). To compensate hybrid access SBSs for their resources loss, we impose hierarchical SU throughput constraints on the optimization problem, which guarantee these small cells more resources than closed access ones. Besides, the cross‐tier interference constraint is also considered to protect the transmissions of macrocell users. Accordingly, a subgradient iteration based resource allocation algorithm is proposed. Numerical results show that the proposed algorithm can satisfy SU throughput constraints of all small cells with different access policies and guarantee quality of service requirements of all accessed macrocell users in hybrid access small cells.  相似文献   

2.
In two‐tier heterogeneous networks (HetNets), the cross‐tier interference caused by spectrum sharing between macrocell and small cells poses obstacle to ideal overall network performance. Both enhanced intercell interference coordination (eICIC) at the macrocell base station (MBS) and resource allocation (RA) at small cell base station (SBS) have been considered as efficient approaches to mitigate the cross‐tier interference. In this paper, we propose a distributed optimization framework to jointly optimize the eICIC and RA schemes at different tiers. In specific, an enhanced almost blank subframe (ABS) scheme is performed by the MBS to encourage SBSs to adopt hybrid access policy and admit the offloaded macrocell users (MUs) so as to guarantee their QoS requirements. To model the intricate interaction between two tiers, we formulate the joint optimization problem as a one‐leader multiple‐follower Stackelberg game. We prove the existence of Stackelberg equilibrium (SE) and obtain the optimal strategies for both tiers. Numerical results are presented to show that the proposed framework with hybrid access policy converges to a unique SE and utilities for both tiers is maximized, which creates a win‐win situation.  相似文献   

3.
In this paper, a new distributed resource allocation algorithm is proposed to alleviate the cross‐tier interference for orthogonal frequency division multiplexing access macrocell and femtocell overlay. Specifically, the resource allocation problem is modeled as a non‐cooperative game. Based on game theory, we propose an iterative algorithm between subchannel and power allocation called distributed resource allocation which requires no coordination among the two‐hierarchy networks. Finally, a macrocell link quality protection process is proposed to guarantee the macrocell UE's quality of service to avoid severe cross‐tier interference from femtocells. Simulation results show that the proposed algorithm can achieve remarkable performance gains as compared to the pure waterfilling algorithm.  相似文献   

4.
在超密集网络中,小区间干扰严重制约了小区边缘用户的性能体验以及网络吞吐量。无线大数据分析的飞速发展,使得人们有可能通过预测未来的信道状态来分配资源,在无干扰网络中可达到很大的性能增益。但是在干扰网络中如何利用预测信息,在分配资源的同时有效协调干扰还是一个尚未研究的问题。本文分析了干扰网络中预测资源分配的设计难点和存在的问题,针对该问题提出了相应的解决方法,将资源分配建模成一个凸优化问题,通过求解优化问题得到最优的资源分配方法。仿真表明,与未知预测信息的最大化网络吞吐量方法相比,所提方法能够有效提高用户的成功传输率、平均传输进度和网络的吞吐量。当用户数据需求较大时,所提方法可以提供较大的网络性能增益。   相似文献   

5.
Two‐tier heterogeneous networks, where the current cellular networks, that is, macrocells, are overlapped with a large number of randomly distributed femtocells, can potentially bring significant benefits to spectral utilization and system capacity. In a two‐tier network, the cross‐tier interference needs to be handled properly. Unlike the downlink interference, the uplink (UL) interference at femtocell caused by macrocell user equipment (MUE) has not been addressed sufficiently. When an MUE is located near the coverage of femtocell, its transmit power may cause UL interference to the femtocell receiver, especially for the closed subscriber group femtocells that share the entire frequency spectrum with macrocell. We propose a novel quasi‐access strategy, which allows the interfering MUE to connect with the interfered femtocell access point (FAP) while only via UL. It can significantly alleviate the UL interference at the FAP as well as its neighbors, in the meantime, benefit the macro‐tier. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
随着移动通信的普及和规模的扩大,移动业务逐步走向多元化,需要在有限的无线资源的条件下,最大限度地提高无线资源利用率。通过动态信道分配(DCA)技术,TD—SCDMA系统资源分配的灵活性和高的频谱利用率可以得到充分体现。具体实施时DCA可以分为慢速DCA和快速DCA两类。慢速DCA可根据系统干扰受限的先验知识、负荷情况,对系统载频和时隙进行占用优先级划分,完成呼叫接入控制;快速DCA可根据对专用业务信道或共享业务信道通信质量监测的结果,自适应地对资源单元进行调配和切换,以保证业务质量。快速DCA中,基于可移动边界DCA方案与传统的固定边界DCA方案比较,能更好地利用资源,丢包率也较小。  相似文献   

7.
Future cellular networks such as IMT‐Advanced are expected to allow underlaying direct Device‐to‐Device (D2D) communication for spectrum efficiency. However, enabling D2D communication in a cellular network presents a challenge in resource allocation because of the potentially severe interference it may cause to the cellular network by reusing the spectrum with the cellular users. In this paper, we analyze the resource allocation problem in a single cell system when both cellular users and D2D users are present in the system. We first consider the scenario where cellular users and D2D users are allocated resource independently and propose an optimal algorithm and a heuristic algorithm, and then extend the methods to the scenario where cellular users and D2D users are allocated resource jointly. The number of permitted D2D pairs is selected as a performance measure because it is a more specific performance measure than spectrum efficiency. The proposed schemes maximize the number of permitted D2D communication pairs in a system meanwhile avoiding the strong interference from D2D links to the cellular links. Finally, the performance of the proposed methods is evaluated through the numerical simulation. The simulation results show that the proposed methods enhance the number of permitted D2D communication pairs significantly and that the performance of the proposed scheme for jointly allocation scenario is better than that of the proposed scheme for independently allocation scenario. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In two‐tier networks, which consist of macrocells and femtocells, femtocells can offload the traffic from macrocells thereby improving indoor signal coverage. However, the dynamic deployment feature of femtocells may result in signal interference due to limited frequency spectrum. The tradeoff between broad signal coverage and increased signal interference deserves further exploration for practical network operation. In this paper, dynamic frequency resource management is proposed to avoid both co‐tier and cross‐tier Orthogonal Frequency Division Multiple Access downlink interference and increase frequency channel utilization under co‐channel deployment. A graph‐based non‐conflict group discovery algorithm is proposed to discover the disjoint interference‐free groups among femtocells in order to avoid the co‐tier interference. A macrocell uses the femtocell gateway for frequency resource allocation among femtocells to avoid cross‐tier interference. We formulate the optimized frequency resource assignment as a fractional knapsack problem and solve the problem by using a greedy method. The simulation results show that the average data transfer rate can be increased from 21% to 60%, whereas idle rate and blocking rate are decreased in the range of and , respectively, as compared with conventional graph coloring and graph‐based dynamic frequency reuse schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Device‐to‐device (D2D) communication underlaying cellular networks is a promising technology to improve network resource utilization. In D2D‐enabled cellular networks, interference among spectrum‐sharing links is severer than that in traditional cellular networks, which motivates the adoption of interference cancelation (IC) techniques at the receivers. However, to date, how IC can affect the performance of D2D‐enabled cellular networks is still unknown. In this paper, we present an analytical framework for studying the performance of two IC methods, that is, unconditional IC and successive IC, in large‐scale D2D‐enabled cellular networks using the tools from stochastic geometry. To facilitate the interference analysis, we propose an approach of stochastic equivalence of the interference, which converts the two‐tier interference (interference from the cellular tier and D2D tier) to an equivalent single‐tier interference. Based on the proposed stochastic equivalence models, we derive the general expressions for the successful transmission probabilities of both cellular uplinks and D2D links in the networks where unconditional IC and successive IC are respectively applied. We demonstrate how these IC methods affect the network performance using both analytical and numerical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a dynamic and location‐based power allocation mechanism is proposed which could be adopted at both macrocell (MC) and overlaid fixed/mobile small cells (SCs) to mitigate inter‐cell interference (ICI) effects in heterogeneous cellular networks (HetCNs). The proposed Dynamic Power Allocation based on User Location (DPAUL) mechanism allows both MCs and deployed fixed/mobile SCs to dynamically allocate transmit power to its serving base stations (BSs) based on the location of a user in the cell. The paper illustrates the mitigation of dynamic downlink interferences occurring due to the mobility of SCs and users. The mobility of cell and its users is analyzed by introducing the Cell‐User mobility (CUM) model in the network. The proposed DPAUL mechanism is compared with the authors' other ICI mitigation techniques: Dynamic Fixed Region Cooperation (DFRC) and Dynamic Power Allocation Mechanism (DPAM). The network metrics Sumrate, User throughput, Energy‐efficiency, and Outage probability are investigated with allocation of sub 6 GHz and mmWave spectrums at MCs and fSCs/mSCs, respectively.  相似文献   

11.
This paper investigates the radio resource management (RRM) issues in a heterogeneous macro‐femto network. The objective of femto deployment is to improve coverage, capacity, and experienced quality of service of indoor users. The location and density of user‐deployed femtos is not known a‐priori. This makes interference management crucial. In particular, with co‐channel allocation (to improve resource utilization efficiency), RRM becomes involved because of both cross‐layer and co‐layer interference. In this paper, we review the resource allocation strategies available in the literature for heterogeneous macro‐femto network. Then, we propose a self‐organized resource allocation (SO‐RA) scheme for an orthogonal frequency division multiple access based macro‐femto network to mitigate co‐layer interference in the downlink transmission. We compare its performance with the existing schemes like Reuse‐1, adaptive frequency reuse (AFR), and AFR with power control (one of our proposed modification to AFR approach) in terms of 10 percentile user throughput and fairness to femto users. The performance of AFR with power control scheme matches closely with Reuse‐1, while the SO‐RA scheme achieves improved throughput and fairness performance. SO‐RA scheme ensures minimum throughput guarantee to all femto users and exhibits better performance than the existing state‐of‐the‐art resource allocation schemes.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Small cells have been regarded as an appealing technique to boost resource reuse ratio.On the other hand,their large-scale and self-organised tendency would complicate the interference environment of mobile networks.Meanwhile,traffic class is booming in recent years,which leads to higher demand for network designers on Quality of Service(QoS)provision,and therefore users' diverse requirements may not be guaranteed in such an interference limited scenario.To maximise the number of users with QoS demands as well as resource reuse ratio,we formulate the resource allocation problem into a multi-objective l0norm form.It is shown to be NP hard,and an iterative method is employed to approach the optimal solution.Because of its limit of being not adaptive to large-scale networks,we also design a heuristic method based on chordal graph,which,however,could result in performance loss when the size of networks is small.Finally,by combining these two methods,we devise a hybrid algorithm such that the allocation performs both efficiently and effectively.Simulation results illustrate the performance of our proposed methods in terms of outage probability and resource reuse ratio.  相似文献   

13.
认知无线网络中基于OFDMA的次系统(SS)与LTE-A主系统(PS)以重叠方式共享频谱的问题越来越受到学术界重视,该文关注上述场景中的资源分配和干扰避免问题。该问题的困难在于资源分配子问题中带耦合干扰的功率分配问题是NP-难的。为了满足研究场景提出的时延约束,该文将提出两阶段资源分配算法:子载波分配阶段的最大权匹配方法和功率分配阶段的干扰量化分配方法,简记为MQRA算法。理论分析和仿真结果表明,该文提出的MQRA算法能够很好地平衡性能和复杂性,并适用于LTE-A主系统下的频谱共享问题。  相似文献   

14.
Underlaying device-to-device (D2D) communication is suggested as a promising technology for the next generation cellular networks (5G), where users in close proximity can transmit directly to one another bypassing the base station. However, when D2D communications underlay cellular networks, the potential gain from resource sharing is highly determined by how the interference is managed. In order to mitigate the resource reuse interference between D2D user equipment and cellular user equipment in a multi-cell environment, we propose a resource allocation scheme and dynamic power control for D2D communication underlaying uplink cellular network. Specifically, by introducing the fractional frequency reuse (FFR) principle into the multi-cell architecture, we divide the cellular network into inner region and outer region. Combined with resource partition method, we then formulate the optimization problem so as to maximize the total throughput. However, due to the coupled relationship between resource allocation and power control scheme, the optimization problem is NP-hard and combinational. In order to minimize the interference caused by D2D spectrum reuse, we solve the overall throughput optimization problem by dividing the original problem into two sub-problems. We first propose a heuristic resource pairing algorithm based on overall interference minimization. Then with reference to uplink fractional power control (FPC), a dynamic power control method is proposed. By introducing the interference constraint, we use a lower bound of throughput as a cost function and solve the optimal power allocation problem based on dual Lagrangian decomposition method. Simulation results demonstrate that the proposed algorithm achieves efficient performance compared with existing methods.  相似文献   

15.
在时分波分无源光网络(TWDM-PON)与云无线接入网(C-RAN)的联合架构中,由于无线域的负载不均衡问题,限制了网络整体的传输效率。为了充分利用TWDM-PON与C-RAN联合架构的网络资源,并保证用户的服务质量(QoS),该文提出一种负载平衡的用户关联与资源分配算法(LBUARA)。首先根据不同用户的服务质量需求以及分布式无线射频头端(RRH)的负载对用户的影响,构建用户收益函数。进而,在保证用户服务质量的前提下,根据网络状态建立随机博弈模型,并基于多智能体Q学习提出负载均衡的用户关联和资源分配算法,从而获得最优的用户关联与资源分配方案。仿真结果表明,所提的用户关联和资源分配策略能够实现网络的负载均衡,保证用户的服务质量,并提高网络吞吐量。  相似文献   

16.
Inter‐cell interference (ICI) is a major problem in heterogeneous networks, such as two‐tier femtocell (FC) networks, because it leads to poor cell‐edge throughput and system capacity. Dynamic ICI coordination (ICIC) schemes, which do not require prior frequency planning, must be employed for interference avoidance in such networks. In contrast to existing dynamic ICIC schemes that focus on homogeneous network scenarios, we propose a novel semi‐distributed dynamic ICIC scheme to mitigate interference in heterogeneous network scenarios. With the goal of maximizing the utility of individual users, two separate algorithms, namely the FC base station (FBS)‐level algorithm and FC management system (FMS)‐level algorithm, are employed to restrict resource usage by dominant interference‐creating cells. The distributed functionality of the FBS‐level algorithm and low computational complexity of the FMS‐level algorithm are the main advantages of the proposed scheme. Simulation results demonstrate improvement in cell‐edge performance with no impact on system capacity or user fairness, which confirms the effectiveness of the proposed scheme compared to static and semi‐static ICIC schemes.  相似文献   

17.
针对设备到设备(D2D)直连通信网络传统最优资源分配算法在随机信道时延、信道估计误差影响下鲁棒性弱的问题,该文在考虑参数不确定性影响的条件下,提出D2D用户总能效最大的鲁棒资源分配算法。考虑干扰功率门限、用户最小速率需求、最大传输功率和子信道分配约束,建立了下垫式频谱共享模式下多用户D2D网络资源分配模型。基于有界信道不确定性模型,利用最坏准则方法将原非凸鲁棒资源分配问题转换为确定性的凸优化问题。然后利用拉格朗日对偶理论求得资源分配的解析解。仿真结果表明所提出的算法具有很好的鲁棒性。  相似文献   

18.
The coexistence of a macrocell and a number of femtocells often leads to a two‐tier heterogeneous network, where the co‐tier interference (CotIN) and cross‐tier interference (CrotIN) both degrade users' quality of service. In order to suppress these interferences, we propose a precoding scheme in a heterogeneous network with cooperative femtocells, called CotIN elimination and CrotIN suppression with precoding criterion selection (ESPS) scheme. In this scheme, we first eliminate the CotINs of each user by applying the QR decomposition to channel matrix. Then the CrotINs of macrocell users and femtocell users are suppressed via the macrocell base station (MBS) and femtocell access points (FAPs) with precoding criterion selection, respectively. By using the ESPS scheme, spatial resources can be efficiently exploited. In addition, our ESPS scheme requires little information exchange between MBS and FAPs without iteration and thus significantly reduces the implementation complexity. Furthermore, the robustness is increased through introducing the information of channel uncertainty into the ESPS when channel estimation or quantization error exists. The performance analysis for the ESPS demonstrates that the ESPS is practical in the heterogeneous networks. Finally, simulation results show that the ESPS can decrease users' bit error rates and increase their transmission rates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
张俊杰  仇润鹤 《电讯技术》2022,(9):1321-1327
针对5G时代小基站的密集部署带来的复杂干扰问题,对下行的认知无线电超密集网络下的资源分配进行了研究。为减小网络干扰,提高次用户吞吐量,提出了一种改进的基于用户分簇的资源分配算法。基于基站的覆盖范围,选出用户的强干扰基站,以用户-基站干扰关系建立用户-用户干扰图,按用户受到的平均弱干扰划分优先级对用户分簇,再为簇集群预分配频段,为每个簇分配对应频段中效用最大的信道。该资源分配算法能准确反映用户间的干扰关系,保障资源分配公平性。仿真结果表明,当用户密度与基站密度均较大时,与相同场景的已有算法相比,该改进算法有较好的抗干扰能力,能有效提高次用户的吞吐量。  相似文献   

20.
李鑫滨  宋兴芳  韩松 《信号处理》2015,31(5):544-550
为进一步提高家庭基站(Femtocell)网络中频谱利用率并优化功率分配,在基于正交频分复用技术(OFDM)系统网络中,提出一种子载波联合优化的多用户资源分配算法,即以最大化频谱利用率作为目标函数,加入基站选择因子对家庭基站进行待机模式选择优化,再对用户的子载波资源进行公平分配,最后利用线性封顶注水算法对小区基站用户功率进行优化分配。仿真结果表明,多用户资源分配算法不仅使频谱和功率利用率都得到显著增长,而且提高了系统吞吐量和用户公平性。该家庭基站资源寻优模型有效地改善了频谱紧缺和功率浪费现状,降低了家庭基站之间的干扰。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号