共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrogen has been widely considered as a clean energy carrier that bridges the energy producers and energy consumers in an efficient and safe way for a sustainable society. Hydrogen can be stored in a gas, liquid and solid states and each method has its unique advantage. Though compressed hydrogen and liquefied hydrogen are mature technologies for industrial applications, appropriate measures are necessary to deal with the issues at high pressure up to around 100 MPa and low temperature at around 20 K. Distinct from those technologies, storing hydrogen in solid-state hydrides can realize a more compact and much safer approach that does not require high hydrogen pressure and cryogenic temperature. In this review, we will provide an overview of the major material groups that are capable of absorbing and desorbing hydrogen reversibly. The main features on hydrogen storage properties of each material group are summarized, together with the discussion of the key issues and the guidance of materials design, aiming at providing insights for new material development as well as industrial applications. 相似文献
2.
Venkata Manikanta Medisetty Ravinder Kumar Mohammad Hossein Ahmadi Dai-Viet N. Vo A. A. V. Ochoa Rajniesh Solanki 《化学工程与技术》2020,43(4):613-624
The energy demand for the automobile and industrial sectors is increasing drastically worldwide. Conventional sources will no longer fulfil the growing energy demand and environmental pollution is a big concern. Thus, an alternative fuel for vehicles is highly required. The focus is shifted on renewable energy sources like hydrogen, which is abundant in nature. This review examines the continuous progress of hydrogen regarding production and storage techniques in India. Current studies and ongoing projects are summarized projecting the status of production, storage, and application of hydrogen. Challenges like infrastructure development, distribution, policies, cost, and public acceptance as obstacles for the commercialization of hydrogen-powered vehicles in the Indian market are analyzed. 相似文献
3.
制氢技术现状及展望 总被引:18,自引:0,他引:18
矿物燃料制氢是主要的制氢方法,其中以天然气蒸汽转化制氢的成本最低。重油部分氧化和煤气化曾经是制氢的重要方法,由于生产成本较高其发展有所减缓。这三种制氢过程制得合成气后还要经过变换完成进一步制氢,最后脱除CO2得到较纯的氢气,过程复杂。随着燃料电池的商业化进程的日益加快,低成本的、不含或少含CO的制氢技术受到广泛关注,其中铁蒸汽法和甲烷催化裂解法制得的氢气不含CO和CO2,过程得到简化。显然,矿物燃料制氢要向大气排放大量的温室气体,对环境不利。水电解制氢是较理想的制氢方法,不产生温室气体,但生产成本较高。因此水电解制氢适合电力资源如水电、风能、地热能、潮汐能以及核能比较丰富的地区。其他制氢技术如热化学制氢、太阳能制氢、生物质制氢以及等离子体制氢也在开发之中,相信是矿物燃料制氢与水电解制氢的有效补充。 相似文献
4.
Muhammad Athar Azmi Mohd Shariff Azizul Buang Muhammad Shuaib Shaikh Muhammad Ishaq Khan 《化学工程与技术》2019,42(3):524-538
Risk assessment is the tool for maintaining perfect safety management systems and aiding sustainable process design, with hazard identification as the critical step. This step can be executed by past accidents analysis (PAA) to achieve the mentioned objectives. Despite of available analyses, the recurring of accidents identifies the shortcomings in PAA and requires a detailed examination as reported in this review. The intensified exploration of accident information will strengthen both the safety management system at existing facilities and process designing in terms of sustainability. 相似文献
5.
介绍了长庆石化公司清洁燃料升级进程中,通过建设制氢装置和扩大重整副产氢能力,采取有效的技术和管理手段,围绕氢气系统运行过程中的突出问题和难点,优化氢气系统运行,达到了以最低氢气成本生产清洁燃料和提高企业经济效益,特别是提升企业竞争力的目的。 相似文献
6.
氢能是一种洁净的可再生的能源,从长远的观点看,氢能的发展与利用能够使能源结构发生重大变化。一些研究结果表明,碳纳米管是一种很有前途的储氢材料,并且这已成为纳米材料应用研究中的一项热点内容。尽管在碳纳米管储氢方面已有一些实验结果,但是就其储氢机理的研究还很不深入,特别是储氢量的理论公式还难以见有报道。从碳原子对氢分子的吸附作用出发,提出统计理论模型,得出了储氢量公式,并与一些实验结果基本符合。这为碳纳米管储氢研究提供了理论依据。 相似文献
7.
文章揭示了该厂过氧化氢生产的稳定运行与安全技术措施之间的密切关系,介绍了影响过氧化氢生产安全,稳定的各种因素及其相应防范措施。 相似文献
8.
Safety management is a key element in industrial safety. Its importance has become clear from the analysis of past accidents. Consequently, the Seveso II directive requires the quality of safety management to be assessed. Such an assessment implies judging parameters which are not readily measurable and hence subjectivity. Formalized and standardized approaches allow the impact of subjective elements on the assessment to be reduced. Three of these approaches are presented. 相似文献
9.
有机液体载体储氢催化剂的研究 总被引:3,自引:0,他引:3
介绍了6种常用的储氢方法:加压压缩储氢技术、液化储氢技术、储氢合金储氢、碳质材料储氢、金属有机骨架储氢、有机液态氢化物可逆储放氢技术等,并对诸项技术的优点以及存在的问题进行了评述。重点介绍了有机液态氢化物可逆储放氢技术的原理和特点,综述了国内外研究现状并提出了使用廉价的液体储氢原料和提高催化剂活性、稳定性的新思路。 相似文献
10.
11.
E. GrigorovaTs. Mandzhukova B. TsyntsarskiT. Budinova M. KhristovP. Tzvetkov B. PetrovaN. Petrov 《Fuel Processing Technology》2011,92(10):1963-1969
The absorption-desorption characteristics towards hydrogen of obtained by ball milling under argon atmosphere magnesium based composites (containing respectively 95 wt% Mg and 5 wt% activated carbon (AC) derived from bean pods (BP), apricot stones (AS) and mixture of coal tar pitch and furfural (CTPF)), were investigated. Actually there is no substantial difference between the rate of hydriding and the absorption capacity for magnesium composite with AC derived from apricot stones, and for magnesium composite with AC derived from a mixture of coal tar pitch and furfural — the capacity is 6.13 wt% for the former and 5.98 wt% for the latter. More significant difference between the investigated composites was observed for the dehydriding process. The magnesium composite with synthetic carbon (from furfural and coal tar pitch) desorbs at 623 K and 0.15 MPa and the absorbed hydrogen about twice faster than magnesium composite with AC from bean pods. The activated carbon derived from a mixture of coal tar pitch and furfural has the highest specific surface area, and obviously this characteristic has important influence especially on the dehydriding kinetics of magnesium. 相似文献
12.
The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively. 相似文献
13.
14.
The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method bas... 相似文献
15.
地下储气库能有效缓解天然气需求存在的矛盾,从而确保天然气的正常供应。章介绍了地下储气库的分类和作用,通过对美国、英国、俄罗斯、法国、德国以及我国地下储气库发展现状的分析,指出我国储气库在安全管理及技术方面存在的问题及需要改进的方面,提出国内地下储气库的发展应重视地下储气库的安全管理,加强地下储气库的相关安全技术研发,逐步监督、管理、规范地下储气库的建设与经营。随着中国储气库安全管理和技术的发展和完善,中国能源地下储存必将得到充分的保障。 相似文献
16.
新型洁净能源一氢能是新能源的研究热点。本文介绍了作为氢能应用典型方式的燃料电池的原理,研究发展和应用前景;并在此基础上概述了氢能应用关键一氢源的制取技术和研究进展,重点介绍了半导体光催化分解水制氢反应机理,技术关键和近期研究重点。 相似文献
17.
苯胺是一种重要的有机化工原料,目前国内生产均采用硝基苯气相加氢还原工艺.本文对苯胺生产安全性进行了评价分析,存在物质危险性和生产工艺危险性. 相似文献
19.
氨工业为人类粮食安全和经济社会发展做出了突出贡献,同时生产过程中也造成了大量二氧化碳排放。利用可再生能源生产的绿氨具有“零碳”特点,全生命周期减碳效果明显,在全球范围内已成为低碳产业发展热点之一。本文通过对绿氨产业政策、绿氨产业发展现状及进展的介绍,以及对绿氨在车船燃料、储氢载体、燃料发电、化工原料等四个下游应用市场竞争力分析,表明全球主要船舶发动机技术商与船舶制造商都在开发氨燃料发动机与氨动力船舶并陆续开展运行测试,国内车用氨燃料发动机已实现相关技术的突破,绿氨在远洋航运领域最先取得突破,当绿电价格随新能源技术进步降至0.20CNY/kWh左右时,全球绿氨车船燃料将迎来大发展,绿氨在重型卡车和远洋船舶行业将越来越具有成本竞争力。同时,氨作为储氢载体发展潜力大,液氨合成与脱氢环节成本占比85%以上,对运距不敏感,未来将成为全球大宗氢气远洋运输的主要形式之一。最后指出绿氨行业可持续发展需要技术创新、产业政策和标准制定的支持。 相似文献
20.
With increasing importance attached by the international community to global climate change and the pressing energy revolution, hydrogen energy, as a clean, efficient energy carrier, can serve as an important support for the establishment of a sustainable society. The United States and countries in Europe have already formulated relevant policies and plans for the use and development of hydrogen energy. While in China, aided by the “30·60” goal, the development of the hydrogen energy, production, transmission, and storage industries is steadily advancing. This article comprehensively considers the new energy revolution and the relevant plans of various countries, focuses on the principles, development status and research hot spots, and summarizes the different green hydrogen production technologies and paths. In addition, based on its assessment of current difficulties and bottlenecks in the production of green hydrogen and the overall global hydrogen energy development status, this article discusses the development of green hydrogen technologies. 相似文献