首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic conversion of alkali metal carbonate (K2CO3) catalyst supported on perovskite oxide was carefully examined as an effective catalyst for low-temperature catalytic gasification of lignite. It showed much higher activity than K2CO3 alone as well as K2CO3 supported on γ-alumina under gasification conditions below 800 °C. Furthermore, catalyzed syngas had higher H2 and lower CO2 ratios than non-catalyzed syngas. Promisingly, there was also much less tar formation, less than 50 wt.% compared to non-catalyzed gasification. Also, less loss of K2CO3 and no coke formation on the catalyst surface were confirmed, comparing to the catalytic gasification with K2CO3 supported on γ-alumina.  相似文献   

2.
Seven mixtures of coals, plastics and wood have been pelletized and fed into a pre-pilot scale fluidized bed gasifier in order to investigate the main aspects of the co-gasification of these materials. The main components of the obtained syngas (CO, H2, CO2, N2, CH4, CnHm) were measured by means of on-line analyzers and a gas cromatograph. The performance of the gasifier was evaluated on the basis of syngas composition, carbon conversion efficiency, energy content of syngas, cold gas efficiency and yield of undesired by-products (tar and soot-like particulate). The results of a first series of experimental tests showed the effect of gas fluidizing velocity and that of equivalence ratio on the main performance parameters for a specific coal-plastics mixture. A second series of tests has been carried out by changing the mixture composition keeping fixed the gas velocity and equivalence ratio. The presence of wood and coal in the mixture with plastics contributed to reduce the tar production even though it is accompanied by a lower syngas specific energy.  相似文献   

3.
A synthesis gas (syngas) with a composition corresponding to that of a biomass gasifier has been reformed over Rh-containing monolith catalysts in the absence and presence of typical undesired species in the syngas. When toluene, a typical light tar component, was added, there was some loss of conversion, probably due to competitive adsorption and reaction with toluene, although dealkylation of toluene can not be ruled out. Significant deactivation due to the tar was not detected. Potassium components impregnated onto the catalyst (KNO3 and KCl) in low concentrations gave slight enhancement of the reforming rates, but at higher concentrations there was severe deactivation.  相似文献   

4.
Syngas obtained by co-gasification of coal and wastes was hot cleaned in two catalytic reactors, which allowed destroying tar and gaseous hydrocarbons with more than one carbon atom. H2S and NH3 contents were also significantly reduced, but CH4 concentrations varying between 2% and 10% and small amounts of H2S (below 100 ppmv) were still found in syngas, depending on coal type and waste composition. This paper studies the effect of experimental conditions on CH4 destruction by reforming reactions in absence and in presence of catalysts. The effect of experimental conditions (temperature, steam flow rate and syngas composition) on CH4 destruction and on CO conversion into CO2 in the absence of catalyst was studied first, using the Equilibrium Reactor model from CHEMKIN modelling software. The selected experimental conditions were then tested in a fixed bed reactor with and without catalyst and the results obtained were consistent with CHEMKIN Equilibrium Reactor model predictions. Commercial Ni-based catalysts were tested (G-90 B5 and G 56B from C&CS). These catalysts were capable of significantly reducing CH4 content, by promoting reforming reactions. At the experimental conditions used and in absence of steam, G 56B seems to be more effective in CH4 conversion, as lower CH4 contents were obtained. In presence of steam both catalysts were capable of completely destroying CH4. Both catalysts also promoted WGS (water gas shift) reaction to some extent, though they are not specific catalysts for this reaction. Thus, a high increase in H2 content was observed, due to its formation by both reforming and WGS reactions. For a complete conversion of CO into CO2 and H2 a specific catalyst for WGS reaction is still needed.  相似文献   

5.
Biomass is considered as a potential source of renewable energy. One of the major problems for biomass gasification is the presence of tar in the product gas. We are investigating catalytic behaviour of olivine as a prospective bed additive for biomass gasifiers for tar removal. In the present paper, the pretreatment of olivine is investigated to improve its activity. Pretreatment method includes heating olivine at 900 °C in the presence of air for different treatment times. The catalytic activity of olivine is investigated via steam-reforming reaction of naphthalene as model biomass tar compound. Improvement in naphthalene conversion of around 30% is observed with 1 h of pretreatment. Also effect of pretreatment time is investigated. With increasing pretreatment time, conversion increases; more than 80% naphthalene conversion is observed with 10 h of pretreatment time for olivine. Both steam and dry reforming reaction of naphthalene forms more than 50% gaseous products over 10 h pretreated olivine. Besides the gaseous products and light tars, polymerization reactions occur producing higher tars in small quantity. Naphthalene conversion under syngas mixture is somewhat lower than that of only in steam and CO2. Apparent activation energy of 187 kJ mol−1 is determined for 10 h pretreated olivine under gasification-gas mixture.  相似文献   

6.
K. Göransson  U. Söderlind  W. Zhang 《Fuel》2011,90(4):1340-1349
This article presents a preliminary test on the 150 kWth allothermal biomass gasifier at Mid Sweden University (MIUN) in Härnösand, Sweden. The MIUN gasifier is a combination of a fluidised bed gasifier and a CFB riser as a combustor with a design suitable for in-built tar/CH4 catalytic reforming. The test was carried out by two steps: (1) fluid-dynamic study; (2) measurements of gas composition and tar. A novel solid circulation measurement system which works at high bed temperatures is developed in the presented work. The results show the dependency of bed material circulation rate on the superficial gas velocity in the combustor, the bed material inventory and the aeration of solids flow between the bottoms of the gasifier and the combustor. A strong influence of circulation rate on the temperature difference between the combustor and the gasifier was identified. The syngas analysis showed that, as steam/biomass (S/B) ratio increases, CH4 content decreases and H2/CO ratio increases. Furthermore the total tar content decreases with increasing steam/biomass ratio and increasing temperature. The biomass gasification technology at MIUN is simple, cheap, reliable, and can obtain a syngas of high CO + H2 concentration with sufficient high ratio of H2 to CO, which may be suitable for synthesis of methane, DME, FT-fuels or alcohol fuels. The measurement results of MIUN gasifier have been compared with other gasifiers. The main differences can be observed in the H2 and the CO content, as well as the tar content. These can be explained by differences in the feed systems, operating temperature, S/B ratio or bed material catalytic effect, etc.  相似文献   

7.
Gasification is an attractive method to convert lignocellulosic biomass into a combustible gas mixture for electricity and power generation. To control the tar concentration in the produced gas to be within the allowable limit of downstream applications, it is important for a gasification system to be integrated with a tar removal process. In this study, an integrated gasification system consisting of a downdraft gasifier and a secondary catalytic tar-cracking reactor was designed and tested for the gasification of pelletized oil palm empty fruit bunch. To further purify the producer gas, the system was also integrated with a cyclone, a water scrubber, and a carbon-bed filter. Biomass was fed at a rate of 5 kg/h, while the air equivalence ratio (ER) and the gasification temperature were set at 0.1 and 800°C, respectively. In total, 5 kg of the specially developed low-cost Fe/activated carbons (AC) catalyst was used in the hot gas catalytic tar-cracking reactor. Results indicate that our integrated gasification system was able to produce a clean burnable gas with a lower heating value (LHV) of 9.05 MJ/Nm3, carbon conversion efficiency (CCE) of 79.4%, cold gas efficiency (CGE) of 89.9%, and H2 and CH4 concentrations of 29.5% and 10.3%, respectively. The final outlet gas was found to only contain 32.5 mg/Nm3 of tar, thus making it suitable for internal combustion engine (ICE) application.  相似文献   

8.
The possibility of the effective catalytic synthesis of methanol from nitrogen-ballasted syngas was studied. Syngas was obtained during the operation of power machines such as diesel engines or gas turbines. The dependences of CO and CO2 conversion per cycle, the quality of methanol, et cetera on the composition of syngas are characterized. The kinetic dependences of methanol synthesis on G-79-7GL catalyst (Zud Chemie) are described. For nitrogen-ballasted syngas, the dependences of the CO and CO2 conversion and the output and quality of methanol on the reaction conditions (pressure, temperature, and gas mixture feed rate) are the same as for nitrogen-free syngas, though the CO conversion declined considerably when the concentration of ballast nitrogen was increased. These studies served as the basis for the creation of energy-independent units for processing hydrocarbon gases into methanol and motor fuels.  相似文献   

9.
A major problem of using Ni-based catalysts is deactivation during catalytic cracking and reforming, lowering catalytic performance of the catalysts. Modification of catalyst with alkali-loading was expected to help reduce coke formation, which is a cause of the deactivation. This paper investigated the effects of alkali-loading to aluminasupported Ni catalyst on catalytic performance in steam reforming of biomass-derived tar. Rice husk and K2CO3 were employed as the biomass feedstock and the alkali, respectively. The catalysts were prepared by a wet impregnation method with γ-Al2O3 as a support. A drop-tube fixed bed reactor was used to produce tar from biomass in a pyrolysis zone incorporated with a steam reforming zone. The result indicated that K2CO3/NiO/γ-Al2O3 is more efficient for steam reforming of tar released from rice husk than NiO/γ-Al2O3 in terms of carbon conversion and particularly hydrogen production. Effects of reaction temperature and steam concentration were examined. The optimum temperature was found to be approximately 1,073 K. An increase in steam concentration contributed to more tar reduction. In addition, the K2CO3-promoted NiO/γ-Al2O3 was found to have superior stability due to lower catalyst deactivation.  相似文献   

10.
A novel air cyclone gasifier of rice husk has been used to obtain experimental data for air staged gasification. Three positions and five ratios of secondary air were selected to study effect of the secondary air on the temperature profile in the gasifier and quality of syngas. Temperature profile and the syngas component are found to be strongly influenced by the injection position and ratio of the secondary air. Generally, gas temperature in all conditions increased at the early stage of reaction, and then decreased in the reduction zone where reactions were endothermic. The peak temperature in the gasifier changed with the injection positions and ratios of the secondary air, which could be as high as 1056 °C. The concentration of CO2, CO, H2 and CH4 increased with the secondary air while the O2 concentration remained constant. The syngas component exhibited different laws when the secondary air ratio was changed. It was also shown that the optimum condition was that the secondary air was injected in the oxidization zone at a secondary air ratio of about 31%. Under that condition, the fuel gas production was 1.30 Nm3/kg, the low heating value of the syngas was 6.7 MJ/Nm3, the carbon conversion rate was 92.2% and the cold gas efficiency of the gasifier was 63.2%. The tar content of the syngas was also studied in this paper. It decreased from 4.4 g/m3 for gasification without the secondary air to 1.6 g/m3 for gasification with the secondary air injected in the oxidization zone.  相似文献   

11.
Development in highly active catalysts for the reforming of methane with CO2 and partial oxidation of methane was conducted to produce hydrogen and carbon monoxide with high reaction rates. An Ni-based four-components catalyst, Ni-Ce2O3-Pt-Rh, supported on an alumina wash-coated ceramic fiber in a plate shape was suitable for the objective reaction. By combining the catalytic combustion of ethane or propane, methane conversion was markedly enhanced, and a high space-time yield of syngas, 25,000 mol/l·h was obtained at a catalyst temperature of 700 ‡C or furnace temperature of 500 ‡C. The extraordinary high space-time yield of syngas was also confirmed even under the very rapid flow rate conditions as a contact time of 3 m-sec by using a monolithic shape of catalyst bed without back pressure.  相似文献   

12.
Silicon carbide-based filter elements were catalytically activated to provide filter elements for catalytic tar removal from biomass-derived syngas. The filter element support was coated with CeO2, CaO–Al2O3 and MgO with a specific surface of 7.4, 15.9 and 21.9 m2/g synthesized by exo-templating with activated carbon. Doping of a MgO coated filter element with 60 wt% NiO has led to an increase of the specific surface from 0.15 to 0.21 m2/g, whereas in case of a MgO–Al2O3 coated filter element a decrease from 1.18 to 0.91 m2/g was found. An increase of the NiO loading from 6 to 60 wt% on a MgO coated filter element resulted in an increase of the naphthalene conversion from 91 to 100% at 800 °C and a face velocity of 2.5 cm/s at a naphthalene concentration of 5 g/Nm3 in model biomass gasification gas. In case of a MgO–Al2O3 coated filter element with 60 wt% NiO in addition to complete naphthalene conversion in the absence of H2S, a higher conversion of 66% was found in the presence of 100 ppmv H2S compared to 49% of the MgO–NiO coated filter element. After scaling up of the catalytic activation procedure to a 1520 mm long filter candle, which shows an acceptable differential pressure of 54.9 mbar, 58 and 97% naphthalene conversion was achieved in the presence and absence of H2S, respectively. The calculated WHSV value of 209.6 Nm3 h−1 kg−1 indicates the technical feasibility of a further increase of the catalytic performance by an increase of the NiO loading.  相似文献   

13.
Decomposition of the tar residue from oil distillation was carried out under hydrothermal conditions using a batch reactor at 623–673 K and 25–40 MPa, with and without K2CO3 as a catalyst. The reaction scheme for tar decomposition was determined as follows: the liquefaction and dissolution process of tar occur first and then intermediate chemical compounds are transformed into lighter molecular weight species. The presence of K2CO3 activates the dissociation of molecular hydrogen to facilitate hydrogenation reactions. The main products from the decomposition of tar were phenol, biphenyl, diphenylether (DPE), and diphenylmethane (DPM). These results indicate that hydrolysis was important in the cleavage of the macromolecular structure of tar under both catalytic and non‐catalytic hydrothermal conditions. This method can be developed for efficient tar liquefaction to generate high yields of valuable chemicals in an environmentally friendly way.  相似文献   

14.
Biomass gasification produces a low to medium-BTU product gas (or syngas) containing primarily CO2, H2, CO, CH4 and (C2 + C3), as well as some contaminants such as tars, NH3, H2S and SO2. In order to achieve better efficiencies of the syngas applications, these contaminants must be removed before the syngas is used for internal combustion, gas engines, and in particular for fuel cells and methanol synthesis. Compared with the wet scrubbing technology, hot-gas cleanup technology to remove tar, ammonia and other contaminants at the “hot” state is more advantageous with respect to energy efficiencies. This paper provides an overview on recent advances in catalysts for hot-gas removal of tar and ammonia from biomass gasification. The review focuses on the recent development and applications of dolomite catalysts, iron-based catalysts, nickel and other metal supported catalysts, and the novel carbon-supported catalysts for hot-gas tar removal and ammonia decomposition. The barriers in applications of hot-gas cleanup processes and catalysts for full-scale biomass gasification, and areas for future research, are also discussed.  相似文献   

15.
Indonesian Roto Middle subbituminous coal was gasified in a pilot-scale dry-feeding gasification system and the produced syngas was purified with hot gas filtering and by low temperature desulfurization to the quality that can be utilized as a feedstock for chemical conversion. Roto middle coal produced syngas that has a typical composition of 36–38% CO, 14–16% H2, and 5–8% CO2. Particulates in syngas were 99.8% removed by metal filters at the operating temperature condition of 200–250°C. Sulfur containing compounds of H2S and COS in syngas were also desulfurized in the Fe chelate system to yield less than 0.5 ppm level. The full stream gasification and syngas purifying system has been successfully operated and thus can provide clean syngas for the research on the conversion of syngas to chemicals like DME and on the future IGFC using fuel cells. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

16.
The purification of biomass-derived syngas via tar abatement by catalytic steam reforming has been investigated using benzene, toluene, naphthalene, anthracene and pyrene as surrogated molecules. The effects of temperature and steam-to-carbon ratio on conversion, and the tendency towards coke formation were explored for each model compound. Two commercial nickel-based catalysts, the UCI G90-C and the ICI 46-1, were evaluated. The five tar model compounds had very different reaction rates. Naphthalene was the most difficult compound to steam reform, with conversions from 0.008 gorg_conv/gcat min (790 °C) to 0.022 gorg_conv/gcat min (890 °C) at an S/C ratio of 4.2. The most reactive compound was benzene, with a conversion of 1.1 gorg_conv/gcat min at 780 °C and an S/C ratio of 4.3. The tendency towards coke formation grew as the molecular weight of the aromatic increased. The minimum S/C ratio for toluene was 2.5 at a catalyst temperature of 725 °C, and for pyrene at 790 °C ,it was 8.4. In general, catalyst temperatures and S/C ratios need to be higher than for naphtha in order to prevent the formation of coke on the catalyst.  相似文献   

17.
《Applied catalysis》1989,46(2):269-279
In this work the catalytic properties of nickel supported on various supports (Al2O3, SiO2, CeO2) in syngas conversion are compared. The influence of the temperature of reduction pretreatment was studied. The characterization of the catalysts was performed by temperature programmed reduction, isothermal reduction, CO and H2 chemisorption, X-ray diffraction, X-ray absorption spectroscopy, magnetization and X-ray photoelectron spectroscopy. The modification of the catalytic properties of Ni/CeO2 catalysts with reduction pretreatment is correlated to the transformation of the CeO2 support and to strong interactions between these species and metal particles.  相似文献   

18.
Nowadays, the syngas which is obtained from the reforming of coal, biomass or natural gas contain significantly amounts of CO2 that cannot be separated and consequently, it can take part into the Fischer–Tropsch (FTS) catalytic activity. Therefore, the presence of CO2 in the syngas flow should be taken into account. In the present study, the FTS CO hydrogenation process was compared to that of CO2 on a carbon nanofibers supported Co catalyst. The influence of CO2 content in the feed stream (H2/CO/CO2 ratio) on the reaction performance in terms of conversion and selectivity to the different products was described. Both the support and the prepared catalyst were characterized by nitrogen adsorption–desorption, temperature-programmed reduction (TPR) and X-ray diffraction (XRD). Results showed that CO hydrogenation was controlled by a Fischer–Tropsch regime, whereas CO2 hydrogenation was controlled by a methanation process. When feed was composed of CO and CO2 mixtures, the catalytic activity decreased with respect to that obtained with a CO2-free feed stream. Moreover, the presence of CO2 in feed stream favored the formation of lighter hydrocarbons and could block the production of further CO2 via Water-Gas-Shift (WGS) reaction.  相似文献   

19.
A bubbling fluidized‐bed gasification system was selected for catalytic steam gasification of rice straw with four Ni‐based catalysts, i.e., Ni/Al2O3, Ni/CeO2, Ni/MnO2, and Ni/MgO. The effect of temperature, steam/biomass ratio (S/B), and catalyst/biomass ratio (C/B) on the gas composition, char conversion, and hydrogen yield was evaluated. It was found that higher temperature and S/B promote hydrogen production and char conversion. The results also demonstrated that the catalytic activity of Ni/Al2O3 under different S/B values is better than those of the other catalysts. Regarding the catalyst activity, all four catalysts exhibited good performance in terms of tar removal and carbon conversion. However, the performance of Ni/Al2O3 was superior to that of the other three catalysts.  相似文献   

20.
Z. Abu El-Rub  E.A. Bramer  G. Brem   《Fuel》2008,87(10-11):2243-2252
In this paper the potential of using biomass char as a catalyst for tar reduction is discussed. Biomass char is compared with other known catalysts used for tar conversion. Model tar compounds, phenol and naphthalene, were used to test char and other catalysts. Tests were carried out in a fixed bed tubular reactor at a temperature range of 700–900 °C under atmospheric pressure and a gas residence time in the empty catalyst bed of 0.3 s. Biomass chars are compared with calcined dolomite, olivine, used fluid catalytic cracking (FCC) catalyst, biomass ash and commercial nickel catalyst. The conversion of naphthalene and phenol over these catalysts was carried out in the atmosphere of CO2 and steam. At 900 °C, the conversion of phenol was dominated by thermal cracking whereas naphthalene conversion was dominated by catalytic conversion. Biomass chars gave the highest naphthalene conversion among the low cost catalysts used for tar removal. Further, biomass char is produced continuously during the gasification process, while the other catalysts undergo deactivation. A simple first order kinetic model is used to describe the naphthalene conversion with biomass char.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号