首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
采用H2S(g)对含锡铁精矿进行还原硫化焙烧,可实现物料中锡的有效脱除。以热力学分析为基础,对含锡铁精矿中铁、锡物相的转变规律及脱锡机理进行了研究。结果表明,H2S(g)通过自身热分解反应生成H2(g)和S2(g)后,S2(g)优先与Fe3O4发生还原硫化反应生成Fe7S8,H2(g)则与SnO2优先发生还原反应生成Sn(l)。在焙烧系统中引入CO(g)可促进SnO2的还原和硫化。在混合气体(60vol%CO(g)+40vol%H2S(g))流量70 mL/min、焙烧温度1000℃、焙烧时间20 min、以及锡铁精矿粒度-74μm的条件下,含锡铁精矿中Sn脱除率可以达到95.34%。  相似文献   

2.
废旧镀锡覆铜板富含铜、锡等稀贵金属,具有极高的资源化回收利用价值。试验中采用机械剥离预处理+化学法浸出工艺,开展了废旧镀锡覆铜板表面锡的回收及其制备二氧化锡的研究;发现浸出液浓度、液固比、温度、时间等浸出工艺参数会影响锡的浸出回收率,氧化剂H_2O_2、焙烧工艺等会影响制备二氧化锡效果。结果表明,在液固比为4 mL/g、硫酸浓度为80 mL/L、硫酸铜与镀锡铜箔质量比为1:10的工艺条件下,表面锡浸出回收率达到92.13%;按照H_2O_2与Sn~(2+)摩尔比1.5:1、温度55℃、时间30 min工艺条件制得二氧化锡前驱物Sn(OH)_4,经550℃焙烧120 min后得到半结晶态二氧化锡的纯度达到99.21%。  相似文献   

3.
用臭氧类高级氧化剂O3/H2O2对含有丁基黄药的模拟选矿废水进行了处理。考察了O3和H2O2的用量、溶液pH值、丁基黄药初始浓度、常见难免离子对废水CODCr去除效果的影响;并通过紫外-可见光谱和添加叔丁醇试验,探讨了O3/H2O2工艺去除丁基黄药的反应机理。结果表明:丁基黄药初始浓度为400 mg/L、pH=6.8的模拟废水1 000 mL,投加100 L/h 的O3和1 000 mg/L 的H2O2,反应2 h后CODCr的去除率可达60.25%;CO2-3和SO2-4有抑制废水中CODCr去除的作用,而Cu2+和Zn2+可以提高废水CODCr的去除率;O3/H2O2工艺去除废水CODCr反应遵循羟基自由基反应机制。  相似文献   

4.
以云南某锌厂提供的复杂挥发窑渣为研究对象,在理论分析的基础上,采用H2O2-H2SO4水溶液体系常压条件下协同浸出其中的有价金属。以In、Cu及Zn浸出率为考察指标,探讨了H2O2用量、硫酸浓度、反应温度、反应时间、液固比等因素对In、Cu、Zn浸出率的影响。结果表明,在H2O2(30%)用量0.6 mL/g、硫酸浓度3 mol/L、反应温度80 ℃、反应时间2 h、液固比6∶1条件下,In浸出率93.92%、Cu浸出率89.84%、Zn浸出率66.49%。浸出渣中贵金属Ag含量大于0.01%,富集比3.23,初步实现了窑渣中有价金属的分离与综合利用。  相似文献   

5.
以酸洗废硫酸和H2O2组成的氧化体系,降解农药废水中的COD。采用Box-Behnken试验设计,以COD去除率为响应值,考察了废硫酸投加量、H2O2投加量以及反应时间的单独作用和交互影响,通过建立COD降解率数学模型预测酸洗废硫酸/H2O2氧化体系的最佳氧化参数。结果表明,在废硫酸添加量为14.17 mL/L、H2O2添加量为1.47 mL/L、反应时间为55.9 min时,COD降解率存在最大值,为47.79%,在该条件下进行7次试验对模型预测结果进行验证,7次试验的COD降解率平均值为47.52%,与预测值相差0.56%,与拟合模型的预测值基本相符,该模型能够较好地解释酸洗废硫酸/H2O2氧化工艺。此外,对7次试验出水中Pb、Cr也进行了检测,7次试验出水中均未检测出Pb、Cr元素,因此,酸洗废硫酸中存在的微量重金属元素不会对最终出水水质产生影响。表明酸洗废硫酸/H2O2氧化体系用于农药废水处理工艺是可行的。  相似文献   

6.
基于Fenton反应,采用双氧水(H2O2)氧化浸出黄铁矿,试验探究了在H2O2氧化体系中H2O2初始浓度、浸出温度、初始酸度、矿浆浓度、H2O2协同过硫酸盐以及不同活化剂对黄铁矿纯矿物氧化浸出的影响。试验结果表明:在矿浆浓度为10 g/L,H2O2初始浓度为1.76 mol/L,H2SO4初始浓度为0.24 mol/L,反应5 h,黄铁矿的浸出率达到94.05%。通过动力学计算知,浸出温度为25~70℃时,H2O2氧化浸出黄铁矿的表观活化能为12.31 kJ/mol,符合扩散控制的固体反应核收缩模型。  相似文献   

7.
周自成  刘悦  李英  范小振 《矿冶工程》2020,40(4):153-155
采用氧化沉淀法,以Mn(NO3)2·H2O为锰源、NH3·H2O为沉淀剂、H2O2为氧化剂,在温和条件下反应1 h制备了粒度均匀的纯相纳米Mn3O4。以亚甲基蓝溶液为模拟染料废水,考察了纳米Mn3O对亚甲基蓝的类芬顿催化氧化效果。结果表明,当Mn3O4加入量为0.5 g/L时,对25 mg/L亚甲基蓝的降解率可达80.3%。  相似文献   

8.
采用液相还原法制备纳米零价铁(nZVI),以其吸附废水中的Sb(Ⅲ),得到nZVI/Sb颗粒; 将其在500 ℃下氧气煅烧8 h,制得Fe3O4/Sb2O4材料; 再以葡萄糖为碳源、600 ℃氮气热处理,制备了Fe3O4/Sb2O4@C复合材料,并对其性能进行了研究。结果表明,nZVI吸附含Sb(Ⅲ)废水的适宜条件为:中性溶液Sb(Ⅲ)初始浓度100 mg/L,nZVI投加量1.2 g/L,室温下吸附50 min,该条件下废水中Sb(Ⅲ)去除率为73%; 引入Sb2O4后,铁基负极的首次放电比容量高达1065.6 mAh/g; 包覆碳后,Fe3O4/Sb2O4@C复合材料电化学性能明显改善,100 mA/g电流密度下,循环150圈后放电比容量仍可保持在483.7 mAh/g,电流密度2000 mA/g时,放电比容量仍有118.2 mAh/g。  相似文献   

9.
针对从石煤提钒富液制备高纯V2O5的传统工艺存在的弊端,提出了一种在原有冶金级钒生产工艺基础上直接制备高纯V2O5的新方法,其工艺过程是:调整富钒液的硫酸浓度-用氯酸钠溶液将体系氧化至电位大于1 000 mV-过滤得红色滤饼(红饼)-用硫酸溶液溶解红饼-在控制终点pH的情况下加氨水沉钒-过滤、干燥、焙烧得高纯V2O5-氧化后滤液按原有沉钒工艺制备冶金级钒。以陕西五洲矿业股份有限公司石煤提钒富液为对象进行的实验室试验表明,制备高纯钒的关键工艺参数为富钒液起始硫酸浓度1.5 mol/L、红饼溶解硫酸溶液浓度1.5 mol/L、加氨沉钒终点pH=0.8。根据实验室试验结果在五洲矿业公司进行工业试验,制得的高纯钒和冶金级钒分别达99.7级和98级。  相似文献   

10.
酸性 H2O2 氧化法是一种有效的难选金精矿预处理方法,可以使黄铁 矿、毒砂等载金矿物被有效溶解, 从而使金暴露出来,提高金浸出率。 研究了酸性 H2O2 体系中黄铁矿的氧 化机制,并探究了该系体中温度、矿浆浓度、 H2SO4 和 H2O2浓度等对浮选金精矿的预处理效果。 结果表明:H2O2 氧化 过程中没有固相生成物,黄铁矿中的 Fe 转 化为 Fe2+和 Fe3+ 于溶液中,Fe2+ 与 H2O2 可发生 Fenton 反应生成氧 化性极强的羟基自由基(·OH);氧化过程中有 H2SO4 生成,体系的 pH 值随着反应进行逐渐降低;黄铁矿主要被酸性 H2O2 、·OH 和 Fe3+氧化,体系中 S 最终转化为 SO4 2-或 HSO4- 。 浮选金精矿在温度为 30 ℃ 、矿浆浓度为 100 g/L、 H2SO4 初始浓度为 0. 18 mol/L 和 H2O2 初始浓度为 1. 76 mol/L 的条件下氧化预处理后,Fe 浸出率、试样失重率分别为 95. 33%和 51. 42%;浮选金精矿直接浸出时金浸出 率仅为 11. 68%,而经过酸性 H2O2预处理—浸出后,金浸出率可达 92. 69%。  相似文献   

11.
为提高磷酸铁锂中Fe、Li和P浸出率,同时实现高效去除Cu、Al和F,开发了硫酸熟化-水浸、铁粉置换除铜、化学沉淀-萃取二段除铝工艺。结果表明,在熟化时间2.5 h、熟化温度110 ℃、固液比4.0/1、水浸温度60 ℃及水浸时间2 h的最佳条件下,硫酸熟化-水浸工艺可将浓硫酸的使用量降至理论值的0.75倍,此时铁浸出率达95%以上,氟脱除率达74.4%; 铁粉置换除铜过程中,控制初始pH=1.2,铁粉加入量为理论值的1.2倍时,浸出液中残留的Cu2+浓度可降至4.9 mg/L以下; 采用化学沉淀-P204萃取二段除铝工艺,可将浸出液中Al3+浓度降至10 mg/L以下。  相似文献   

12.
采用循环伏安、计时安培测试研究了在20 g/L CuSO4+70 g/L H2SO4酸性镀液中Cl-存在对铜沉积还原过程以及Cl-浓度对铜在压延铜箔基体上电结晶初期行为的影响。研究表明, 加入Cl-, 铜沉积起始电位大致不变, 并在较低偏压(-0.3~-0.1 VSCE)下缩短铜结晶初期的形核弛豫时间, 提高阴极还原电流; 在较高的偏压(-0.6~-0.4 VSCE)下, Cl-则阻碍铜的结晶沉积。通过扫描电镜还观察了Cl-浓度、偏压对铜镀层组织形貌特征的影响, 探讨了Cl-在铜电结晶过程中的作用机理。  相似文献   

13.
采用锡盐共沉淀法从铜电解液中脱除砷、锑、铋,考察了锡价态、反应温度、锡用量、反应时间和溶液酸度等因素对杂质脱除效果的影响.结果表明,硫酸浓度174.04 g/L、铜浓度48.14 g/L、砷浓度16.54 g/L、锑浓度96.77 mg/L、铋浓度44.24 mg/L的电解液中加入锡盐,当净化条件为Sn(Ⅳ)/As质量...  相似文献   

14.
为了提高硫酸化焙砂中金和铜的浸出率,降低尾渣金品位,减少铜对氰化浸出过程的影响,考察了焙砂粒度、硫酸浓度、温度对硫酸脱铜率和脱铜渣氰化浸金率的影响。结果表明,焙砂(矿粉粒度-0.045 mm粒级占90.16%)在酸度25 g/L、液固比1.5∶1、80 ℃下浸出2 h,硫酸脱铜率达93.62%。脱铜渣在NH4HCO3用量10 kg/t、液固比1.5∶1、NaCN浓度0.10%条件下浸出60 h,金浸出率高达98.04%。根据研究结果,通过提高硫酸脱铜温度、硫酸浓度和氰化浸出过程增加旋流器和浸出槽数,采用两段浸出-两段洗涤措施,对现有生产流程进行了优化,铜和金回收率得到了明显提高,获得较好的经济效益。  相似文献   

15.
通过分析高铟氧粉酸浸渣的成分和物相特征, 发现其主要物相为Cu2FeS2、ZnSO4、ZnS和PbSO4, 由于成分复杂, 单一方法无法有效回收铜、锌、铅, 因此设计了硫酸-氯盐二段浸出法, 分别提取酸浸渣中铜、锌和铅。一段浸出采用硫酸浸出, 在始酸浓度60 g/L, 液固比5∶1, 氧化剂高锰酸钾用量4%, 浸出温度60 ℃条件下, 浸出2 h, 铜和锌浸出率分别达到84.29%和92.02%; 二段浸出采用氯盐浸出, 在NaCl浓度300 g/L, 液固比10∶1, pH=1.5~2.0, 浸出温度90 ℃条件下, 浸出60 min, 铅浸出率达到91.14%。该法对铜、锌和铅都有很好的浸出效果。  相似文献   

16.
针对Fe和Cu含量分别为2.158 g/L和0.730 g/L的含铜硫酸渣浸出液,采用氧化-中和水解除铁-硫化沉淀法回收其中的铜。对比了碳酸钠与石灰乳两种水解沉淀剂的除铁效果以及硫化钠与硫代硫酸钠两种沉铜剂的效果。最佳除铁条件为:以碳酸钠为除铁水解沉淀剂、H2O2和铁离子摩尔比1.5、水解pH值4.0、水解温度85℃、水解时间3 h,最佳沉铜条件为:硫化钠作为沉铜剂(用量为除铁后液中铜离子的等摩尔数)、沉淀pH值4.0、沉淀温度85℃、沉淀时间2 h。最佳工艺条件下,浸出液综合除铁率为92.98%、铜综合回收率为90.34%,沉淀得到铜品位为61.65%的硫化铜渣,可作为冶炼产品直接出售。  相似文献   

17.
采用硫酸浸出-萃取-反萃工艺流程回收电镀污泥中的铜。运用MATLAB拟合了1 mol/L硫酸体系中铜的浸出动力学模型,表明该浸出过程为扩散和表面反应共同控制。在硫酸浓度1 mol/L、液固比15∶1条件下浸出10 min,铜浸出率达到90%。采用萃取-反萃取的方式回收浸出液中的Cu2+,以Mextral® 984H为萃取剂、Mextral® DT100为稀释剂,在溶液pH=2、萃取时间30 min、O/L相比1∶1、萃取剂浓度10%条件下萃取,铜萃取率可达99%;O/L相比1∶1、反萃取时间30 min,用25%的硫酸溶液进行反萃取,铜反萃取率可达95%。此工艺流程铜总回收率可达85%,实现了铜的高效回收。  相似文献   

18.
铜冶炼烟尘的综合利用   总被引:1,自引:0,他引:1  
牛建军 《矿冶工程》2022,42(3):118-120
以铜转炉烟尘为原料, 采用高压酸浸工艺回收有价金属和脱除砷。结果表明, 在硫酸浓度4 mol/L、浸出温度100 ℃、浸出时间2 h条件下, 烟尘中砷、铁和铜浸出率分别为94.14%、93.80%、91.80%, 浸出渣主要物相为硫酸铅(PbSO4);通过氧压沉砷处理浸出液, 使溶液中铁和砷形成臭葱石(FeAsO4·2H2O)而固化;沉砷后液主要物质为Cu2+和SO42-, 可用于电解回收铜。该工艺可以实现铜烟尘中有价金属的综合回收, 同时将砷以臭葱石形式固化, 减少对环境的污染。  相似文献   

19.
在高铁生物浸铜液中通入H2S气体, 生成硫化铜渣, 双氧水-硫酸浸出硫化铜渣, 得到硫酸铜溶液, 后经蒸发浓缩、冷却结晶制得硫酸铜。研究结果表明: 当生物浸出液pH=1, 反应温度为30 ℃, 反应时间为3 h时, 在生物浸铜液中通入硫化氢, 铜沉淀率接近100%; 双氧水-硫酸浸出硫化铜渣, 当双氧水与铜物质的量之比为6.4∶1, 反应温度为50 ℃, 液固比为15∶1, 硫酸浓度为3 mol/L, 反应时间为2 h时, 铜浸出率为92.1%; 所得浸出液中硫酸浓度为343.49 g/L, Cu2+浓度为 25.33 g/L, 通过蒸发浓缩、冷却结晶得到纯度为96%的硫酸铜, 其质量达到工业用硫酸铜质量标准(GB437-93)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号