首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, biosorption of Brilliant green (BG) and Methylene blue (MB) dyes in binary mixture onto Saccharomyces cerevisiae were studied. pH at which the biosorption capacity of biomass is maximum was found to be 6 which is close to the pH of natural aqueous solutions. This is a big advantage of S. cerevisiae which makes it applicable for the technology of dye removal from natural aqueous dye solutions. Note that the time for the applied biosorption process for the dye removal is considerably short (about 5 min) which is a big improvement for the adsorption processes. This proves that the S. cerevisiae is a promising adsorbent. The BG and MB dyes were simultaneously analyzed using the fifth and fourth order derivative spectrophotometric method, respectively. Several isotherm models were applied to experimental data and the isotherm constants were calculated for BG and MB dyes. Among the applied models, Freundlich isotherm model showed best fit to the biosorption equilibrium data.  相似文献   

2.
《分离科学与技术》2012,47(10):1471-1481
Equilibrium and kinetic behavior of two basic dyes, Methylene Blue (MB) and Safranine T (ST), onto calcite in single and binary component systems have been studied. Experimental equilibrium results have been well predicted by the Freundlich and the Langmuir isotherm models. The model parameters obtained for single solute systems at 298 K have been used for the calculation of adsorption isotherms in binary dye solutions using multi-component isotherm models. Extended Freundlich and extended Langmuir models satisfactorily fit to MB–ST adsorption in binary solutions. A site distribution function which gives information about the affinity of adsorption sites for competing species in a binary system has been mathematically calculated by using Freundlich isotherm parameters. Time-dependent results for single and binary dye solutions have been analyzed according to the Vermeulen and McKay models based on homogeneous and heterogeneous diffusion processes, respectively. Thermodynamic functions for the transition state have been evaluated from the temperature dependence of diffusion coefficients using the Eyring equation.  相似文献   

3.
Cadmium hydroxide nanowires loaded on activated carbon (Cd(OH)2-NW-AC) was applied for removal of malachite green (MG) and sunset yellow (SY) in single and binary component systems. This novel material was characterized and identified by different techniques such as Brunauer, Emmett and Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis. Unique properties such as high surface area (>1271 m2 g−1) and low pore size (<35 Å) and average particle size lower than 50 Å in addition to high reactive atom and presence of various functional groups make it possible for efficient removal of these two dyes. In the single component system in this study, maximum adsorption capacity of 80.6 for SY and 19.0 mg g−1 for MG at 25 °C was reported. The Langmuir model had very well fit with the experimental data (R2 > 0.996). A better agreement between the adsorption equilibrium data and mono-component Langmuir isotherm model was found. The kinetics of adsorption for single and binary mixture solutions at different initial dye concentrations were evaluated by the nonlinear first-order and second-order models. The second-order kinetic model had very well fit with the dynamical adsorption behavior of a single dye for lower and higher initial dye concentrations. SY and MG without spectra overlapping were chosen and analyzed with high accuracy in binary solutions. The effect of multi-solute systems on the adsorption capacity was investigated. The isotherm constants for SY and MG were also calculated in binary component systems at concentrations within moderate ranges, the Langmuir isotherm model satisfactorily predicted multi-component adsorption equilibrium data. The competitive adsorption favored the SY in the A mixture solution (both SY and MG concentration at 10 mg L−1) and B mixture solution (25 mg L−1 of SY and 10 mg L−1 of MG). Also, in both cases, kinetic data was fairly described by two-step diffusion model. An endothermic and spontaneous nature for the adsorption of the dyes studied were shown from thermodynamic parameters in single and binary component systems.  相似文献   

4.
In this article, surface modification of feldspar using hexadecyltrimethyl ammonium bromide (HDTMA) and its dye removal ability in single and binary systems was studied. Acid Black 1 (AB1) and Acid Red 14 (AR14) were used as model dyes. The monocomponent Langmuir isotherm model was applied to experimental data and the isotherm constants were calculated for both dyes. The monolayer coverage capacities of surfactant‐modified feldspar (HDTMA‐feldspar) for AB1 and AR14 dyes in single solution system were found as 6.369 mg/g and 3.984 mg/g, respectively. It was observed that the equilibrium uptake amounts of AB1 and AR14 dye in binary mixture onto sorbent decreased with increasing concentrations of the other dye resulting in their antagonistic effect. Equilibrium adsorption for binary systems was analyzed by using the Extended Langmuir and Jain and Snoeyink Modified Extended Langmuir models. The rate of kinetic processes of single and binary dye systems onto adsorbent was described by using two kinetics adsorption models. The pseudo‐second‐order model was the best choice among the kinetic models to describe the adsorption behavior of single and binary dyes onto HDTMA‐feldspar. Thermodynamic parameters showed that dye adsorption on HDTMA‐feldspar were exothermic and unspontaneous in nature. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
The adsorption of bromophenol red (BPR) onto three adsorbents including palladium, silver and zinc oxide nanoparticles loaded on activated carbon (Pd-NP-AC, Ag-NP-AC and ZnO-NP-AC) in a batch system has been studied and the influence of various parameters has been optimized. The influence of time on removal of BPR on all adsorbent was investigated and experimental data were analyzed by four kinetic models including pseudo first and second-order, Elovich and the intraparticle diffusion equations. Following fitting the experimental data to these models, the respective parameters of each model such as rate constants, equilibrium adsorption capacities and correlation coefficients for each model were investigated and based on well known criterion their applicability was judged. It was seen that the adsorption of BPR onto all adsorbents sufficiently described by the pseudo second-order equation in addition to interparticle diffusion model. The adsorption of BPR on all adsorbent was investigated at various concentration of dye and the experimental equilibrium data were analyzed and fitted to the Langmuir, Freundlich, Tempkin, Dubinin, and Radushkevich equations. A single stage in batch process was efficient and suitable for all adsorbents using the Langmuir isotherm with maximum adsorption of 143 mg g?1 for Pd-NP-AC, 250 mg g?1 for Ag-NP-AC and 200 mg g?1 for ZnO-NR-AC. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° for Pd-NP-AC adsorbent were calculated.  相似文献   

6.
Adsorption characteristics of cationic dyes and surfactants onto clay and sandstone from a single component system were studied using toluidine blue (TB) and cetyl trimethylammonium bromide (CTAB). Equilibrium data of TB and CTAB in the single solute systems fit well to the Langmuir and the Freundlich adsorption isotherms. Competitive adsorption was observed between dye and surfactant cations. The effect of sodium chloride on dye and surfactant adsorption was studied in TB–NaCl and CTAB–NaCl binary systems. Equilibrium adsorption for binary systems was analyzed by using the extended Langmuir and the extended Freundlich models. Adsorption results for the TB–CTAB system onto both adsorbents were also well described by the Sheindorf–Rebuhn–Sheintuch (SRS) model for multi-component systems. Free energy changes for adsorption systems were calculated using thermodynamic equilibrium constants evaluated from selectivity coefficients of the binary systems. The site distribution functions estimated using Freundlich model parameters gave valuable information about the ratio of the adsorption sites on adsorbent surface having different affinity for competing cations.  相似文献   

7.
This paper describes the removal of Reactive Blue 114 dye from aqueous solutions by using pomelo (Citrus grandis) peel. Pomelo peel can be described as a new, low cost, abundantly available adsorbent. The optimum adsorbent mass, dye concentration, contact time and pH were determined in this study. The parameters of Langmuir, Freundlich and Temkin adsorption isotherms were also obtained using concentrations of the dyes ranging from 1.0 to 200 mg/L. Maximum adsorption capacity was obtained as 16 mg/g at pH 2 and 303 K solution temperature. The adsorption process was observed to be reaching equilibrium after about 90 min.  相似文献   

8.
Nano-TiO2 was modified with 2-mercaptobenzimidazole via surfactant activation and used as an adsorbent for the removal of Ag(I) under optimum conditions. The adsorbent was characterized using powder X-ray diffraction and FT-IR spectroscopy. The equilibrium data were fitted to the Langmuir, Freundlich and Temkin isotherm models. Langmuir isotherm describes the adsorption data better than Freundlich isotherm and Temkin. Kinetic studies showed that the pseudo second order kinetic model fits the adsorption kinetic processes well. Maximum adsorption capacity for Ag(I) was 128.2 mg g−1 of nano-TiO2. The method was successfully applied to the removal of silver from radiology film processing wastewater samples.  相似文献   

9.
Chitosan/poly(amidoamine) (MCS/PAMAM) microparticles were prepared as magnetic adsorbents for removal of Reactive Blue 21 (RB 21) dye from aqueous solution. Characterization of these particles was carried out using scanning electron microscopy, Fourier transform-infrared spectroscopy, X-ray diffractometry and vibrating sample magnetometry. The results indicate that the magnetic chitosan microparticles (MCS) were functionalized with PAMAM dendrimers and maintained its intrinsic magnetic properties. The effects of initial pH, adsorbent dose, initial concentration, contact time and temperature on adsorption were investigated. Kinetic studies showed that the dye adsorption process followed a pseudo-second-order kinetic model but that the adsorption rate was also influenced by intraparticle diffusion. Equilibrium adsorption isotherm data indicated a good fit to the Langmuir isotherm. The maximum adsorption capacities obtained from the Langmuir model were 555.56, 588.24, 625.00 and 666.67 mg g−1 at 303, 313, 323 and 333 K, respectively. The thermodynamic parameters revealed the feasibility, spontaneity and endothermic nature of the adsorption. Recycling experiments confirmed the relative reusability of the adsorbent.  相似文献   

10.
《Applied Clay Science》2010,48(3-4):457-461
Acid-activation of bentonite was optimised to prepare an effective adsorbent of toluene. The activated bentonite was obtained with a specific surface area of 195 m2/g, a pore volume of about 0.46 cm3/g and a most frequent pore size of 62 Å. Compared to the raw bentonite, the adsorption of toluene onto acid-activated bentonite was increased from 66 mg/g to 197 mg/g. Vapor–solid adsorption isotherms of toluene were measured at 120 °C, 140 °C, 160 °C and 182 °C using an inverse gas chromatography. The experimental data were correlated with different adsorption isotherm models such as Langmuir, Freundlich, Langmuir–Freundlich and Toth models. Only the Langmuir–Freundlich equation provided good fit to the experimental data.  相似文献   

11.
The performance of poly(epicholorohydrin dimethylamine) modified bentonite (EPIDMA/bentonite) as an adsorbent to remove anionic dyes, namely Direct Fast Scarlet, Eosin Y and Reactive Violet K-3R, was investigated in single, binary and ternary dye systems. In adsorption experiments in single dye solutions, the adsorption of the three dyes onto EPIDMA/bentonite was described by the Langmuir isotherm model and the pseudo-second-order kinetic model. At low dosage of EPIDMA/bentonite, preferential adsorption was observed for the dye with higher affinity to the adsorbent in mixed dye systems. The reduction in uptake of the dye with increasing equilibrium dye concentration in the isotherm and desorption in the kinetic curves were observed for the dye with lower affinity. The total amount of dyes adsorbed versus the total equilibrium dye concentrations were fitted well by the Langmuir isotherm model. The kinetics of the total adsorbed amount of dyes followed the pseudo-second-order kinetic model. The effect of the dosage of adsorbent on color removal efficiency, residual color distribution and adsorption kinetics was investigated.  相似文献   

12.
In the present work, we report a chemically modified polyacrylamide/silica nanoporous composite adsorbent for the removal of reactive black 5 (RB5) azo dye from aqueous solutions. The composite adsorbent was synthesized in a packed bed and modified by ethylenediamine (EDA). The adsorbent was characterized by Fourier transformation infrared (FT-IR), thermogravimetric analysis (TGA), thermoporometry, Brunauer, Emmett and Teller (BET) method and scanning electron microscopy (SEM). Mechanical stability of the adsorbent was examined in a packed bed by following the back-pressure of the column. Pore diameter of the composite adsorbent in dry and wet states was estimated to be about 18.71 nm and 12.61 nm, respectively. Adsorption experiments were performed in batch mode and effect of various operational parameters on the adsorption capability of the adsorbent was studied systematically. The maximum adsorption capacity of the modified composites was found to be 454.5 mg RB5/g of adsorbent. The equilibrium data were analyzed by Langmuir, Freundlich, Sips, BET and Redlich–Peterson isotherm models and found to fit well to the BET isotherm. The data kinetically followed the pseudo-second-order model. High adsorption capacity, fast removal mechanism, and good mechanical stability are three advantages of the presented composite for the removal of RB5.  相似文献   

13.
《分离科学与技术》2012,47(11):1660-1672
In this paper, the isotherm, kinetic, and thermodynamic of cationic dye removal onto inorganic adsorbent (Feldspar) were investigated in single and binary systems. Basic Red 18 (BR18) and Basic Blue 41 (BB41) were used as cationic dyes. The characterization of the Feldspar was carried out using X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) techniques. The effect of operational parameters such as adsorbent dosage, initial dye concentration, pH, ionic strength, and temperature on dye removal was studied. It was found that the adsorption of BR18 and BB41 onto Feldspar followed with Langmuir and extended Langmuir isotherms in single and binary systems, respectively. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetic in single and binary system. The thermodynamic data showed that dye adsorption onto Feldspar was spontaneous, endothermic, and physisorption reaction. Based on the data of the present investigation, one could conclude that the Feldspar as an eco-friendly and low-cost adsorbent might be a suitable alternative to remove dyes from colored aqueous solutions containing cationic dyes.  相似文献   

14.
In uranium conversion industry, the fluorine is used as chemical raw material gas to produce UF4 and UF6 while its purity is very important. In this study, the adsorption process of hydrogen fluoride, as an impurity in the process of fluorine production, on sodium fluoride pellets is experimentally studied in a lab-scale fixed bed adsorbent. Also, the effects of some operating parameters including inlet concentration and inlet temperature of hydrogen fluoride are precisely investigated on the adsorption process. The data of adsorption are analyzed and correlated by Langmuir, Freundlich and Temkin isotherms. The adsorption capacity is found to be 1.908 and 0.750 g HF/g NaF by the Langmuir isotherm at 22 and 54 °C, respectively. The favorability nature of adsorption which is expressed in terms of a dimensionless separation factor (RL) is found to be more than 1 which indicates an unfavorable adsorption. In addition, the data analysis shows that the Langmuir and Temkin isotherms correlate the equilibrium isotherms better than that of Freundlich.  相似文献   

15.
Montmorillonite (Mt) was used as the precursor material for synthesis of aluminum–iron–pillared montmorillonite (AlFePMt) and the adsorption of aflatoxin B1 (AFB1) by Mt and AlFePMt was investigated. Different forms of polycations were prepared and used to modify Mt, when the molar ratio of Al3 + to Fe3 + was 8.0, AlFePMt obtained the maximum adsorption capacity of AFB1 (660.0 μg/g) which was much higher than that of Mt (30.4 μg/g). The adsorbents were characterized by XRD, SEM and FTIR, and the effects of adsorbent amount, pH and interaction time on the adsorption of AFB1 onto Mt and AlFePMt were also studied. Adsorption isotherm parameters were obtained from Langmuir and Freundlich and the adsorption data fitted better to Langmuir. The obtained results show that the great difference of adsorption capacity between Mt and AlFePMt mainly lies in their microstructure and chemical composition, and it suggests that AlFePMt is suitable to be used as a potential adsorbent to remove AFB1 from the contaminated products.  相似文献   

16.
《分离科学与技术》2012,47(5):839-846
In this study, deoiled-mustard obtained from local oil mills has been used as an inexpensive and effective adsorbent for the removal of Safranine-T dye from wastewater. The influence of various factors on the adsorption capacity has been studied by batch experiments. The adsorption studies revealed that the ongoing adsorption validates Langmuir adsorption isotherms better than the Freundlich adsorption isotherm at temperatures 40, 50, 60°C. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° for the adsorption process were calculated. Desorption profile revealed that a significant portion (83%) of the dye could be desorbed by using 12% acetic acid solution as an eluting agent. A comparative analysis of the adsorption capacities of various adsorbents reveals the superior performance of the adsorbent under study. The results indicated that deoiled-mustard is a good and low-cost adsorbent from the practical point of view for dyes removal and can be used as an economically viable alternative to commercial activated carbon.  相似文献   

17.
《分离科学与技术》2012,47(10):1542-1551
In this paper, cold plasma (CPTAS), formaldehyde (FTAS), and microwave radiation treated (MTAS) acorn shell obtained from Quercus petraea tree as biosorbent was characterized and its dye removal ability at different dye concentrations was studied. The isoelectric point, functional groups and morphology of acorn shell was investigated as adsorbent surface characteristics. Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and UV–Vis spectrophotometry were used. Methylene blue (MB) was used as model cationic dye. The Langmuir and Freundlich adsorption isotherm models were applied to describe the equilibrium isotherms. The results indicated that the data for adsorption of MB onto treated acorn shell fitted well with the Langmuir isotherm model. Comparison of adsorption capacities of CPTAS with FTAS has shown a significant increase by as much as about 30 mg/g (33.32%) in MB adsorption.The pseudo-first order, pseudo-second order kinetic models were examined to evaluate the kinetic data, and the rate constants were calculated. Adsorption kinetic of dyes followed pseudo-first order kinetics. Thermodynamic parameters such as free energy, enthalpy, and entropy of dye adsorption were obtained. The results indicated that acorn shell could be used as a natural biosorbent for the removal of cationic dyes.  相似文献   

18.
Bamboo charcoal (BC) obtained by pyrolysis of Makino bamboo in the absence of oxygen was used as support for the preparation of Ni-doped adsorbent (Ni-BC). The low-cost composite was characterized and used as an adsorbent for Pb(II) removal from water. The results showed that both BET surface area and total pore volume of Ni-BC increased. The adsorption of Pb(II) strongly depended on solution pH, temperature and ionic strength. The adsorption isotherms followed Langmuir isotherm model well, and the maximum adsorption capacities of Pb(II) at 298 K were 25.0 and 142.7 mg/g for BC and Ni-BC, respectively. The adsorption processes were well fitted by pseudo-second-order kinetic model. Thermodynamic parameters showed that the adsorptions of Pb(II) onto both adsorbents were feasible, spontaneous, and exothermic under the studied conditions. The spent Ni-BC could be readily regenerated for reuse.  相似文献   

19.
《分离科学与技术》2012,47(14):2125-2131
The adsorption of Methylene Blue (MB) and Acid Orange 7 (AO7) from aqueous solutions by acid treated coconut coir was investigated under laboratory conditions to assess its potential in removing cationic and anionic dyes. The acid treated coconut coir exhibited better adsorption capacity in cationic dye MB than anionic dye AO7 and the data obtained can be well described by both Langmuir and Freundlich isotherm models. According to the Langmuir isotherm model, the maximum adsorption capacities of MB and AO7 onto acid treated coconut coir were 121 mg/g and 10 mg/g, respectively. The adsorption behavior of MB and AO7 onto acid treated coconut coir was analyzed with first-order Lagergren model and pseudo-second order model.  相似文献   

20.
In this study, humic acid (HA) was immobilized onto amine-modified polyacrylamide/bentonite composite (Am-PAA-B) which was prepared by direct intercalation polymerization technique and the product (HA-Am-PAA-B) was used as an adsorbent for the removal of copper(II) ions from aqueous solutions. The surface characteristics of bentonite, Am-PAA-B and HA-Am-PAA-B were investigated. The adsorbent behaved like a cation exchanger and more than 99.0% Cu(II) ions’ removal was observed at the pH range 5.0–6.0. Kinetic and isotherm experiments showed that amount of Cu(II) ions adsorbed increases with increase of the initial concentration and temperature. The adsorption kinetic data were interpreted by pseudo-first-order and pseudo-second-order rate equations. The suitability of Langmuir, Freundlich and Dubinin–Radushkevich (D-R) adsorption models to the equilibrium data was investigated. The Langmuir isotherm was found to provide the best theoretical correlation of the experimental equilibrium data. The thermodynamic and kinetic activation parameters were derived to predict the nature of adsorption process and discussed in detail. The isosteric heat of adsorption was constant even after increase in surface loading. The removal efficiency of HA-Am-PAA-B was tested using electroplating industry wastewater. The desorption of adsorbed Cu(II) ions was achieved by 0.1 M HCl and four adsorption/desorption cycles were performed without significant decrease in the adsorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号