首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unsupported NiMo sulfide catalysts were prepared from ammonium tetrathiomolybdate (ATTM) and nickel nitrate by using a hydrothermal synthesis method involving water, organic solvent and hydrogen. The activity of these catalysts in the simultaneous hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was much higher than that of the commercial NiMo/Al2O3 sulfide catalysts. Interestingly, the unsupported NiMo sulfide catalysts showed higher activity for hydrogenation (HYD) pathway than the direct desulfurization (DDS) pathway in the HDS of DBT. The same trends were observed for the HDS of 4,6-DMDBT. Morphology, surface area, pore volume and the HDS activity of unsupported NiMo sulfide catalyst depended on the catalyst preparation conditions. Higher temperature and higher H2 pressure and addition of an organic solvent were found to increase the HDS activity of unsupported NiMo sulfide catalysts for both DBT and 4,6-DMDBT HDS. Higher preparation temperature increased HYD selectivity but decreased DDS selectivity. High-resolution TEM images revealed that unsupported NiMo sulfide prepared at 375 °C shows lower number of layers in the stacks of catalyst with more curvature and shorter length of slabs compared to that prepared at 300 °C. On the other hand, higher preparation pressure increased DDS selectivity but decreased HYD selectivity for HDS of 4,6-DMDBT. HRTEM images showed higher number of layers in the stack for the NiMo sulfide prepared under an initial H2 pressure of 3.4 MPa compared to that under 2.1 MPa. The optimal Ni/(Mo + Ni) ratio for the NiMo sulfide catalyst was 0.5, higher than that for the conventional Al2O3-supported NiMo sulfide catalysts. This was attributed to the high dispersion of the active species and more active NiMoS generated. The present study also provides new insight for controlling the catalyst selectivity as well as activity by tailoring the hydrothermal preparation conditions.  相似文献   

2.
《Applied Catalysis A: General》2001,205(1-2):101-108
Hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of a commercial medium cycle oil (MCO) were performed over a commercial NiMoS/Al2O3 catalyst through both single- and two-stage hydrotreatments at 340°C. The reaction atmosphere was replaced with fresh hydrogen, with or without additional dose of catalyst, for the second-stage treatment to determine the mechanism of reduced activity. Sulfur and nitrogen molecular species in MCO were identified by gas chromatography with an atomic emission detector (GC-AED) to quantify their respective reactivities and susceptibilities to inhibition. Under single-stage (30 min) conditions, the reactivity orders in HDS and HDN were BT>DBT>4-MDBT>4,6-DMDBT and In>alkylIn>Cz>1-Cz>1,8-Cz, respectively. Additional reaction time beyond the initial 30 min, without atmosphere or catalyst replacement, gave little additional conversion. Replacement of the first-stage gas with fresh hydrogen strongly improved second-stage conversions, particularly those of the more refractory species. An additional dose of catalyst for the second stage with hydrogen renewal facilitated additional HDS of dibenzothiophene (DBT), 4-monomethylated DBT (4-MDBT), and 4,6-dimethylated DBT (4,6-DMDBT) which was independent of their initial reactivity, while HDN of carbazole (Cz), 1-Cz, and 1,8-Cz was improved, the least reactive species being most denitrogenated. Such results suggest the strong inhibition of the gaseous products H2S and NH3. The catalyst deactivation was most marked with HDN of 1,8-Cz, suggesting that acidity is essential to the reaction. H2S is suspected to inhibit both S elimination and hydrogenation of S and N species at the level of concentration obtained during desulfurization. The inhibition by remaining substrates may still influence the HDS and HDN of refractory species in the second stage, even if their contents were reduced by the first stage. It appears very important to clarify the inhibition factor of all species on the refractory sulfur species, and to determine the inhibition susceptibility of these species at their lowered concentration to enable the effective achievement of 50 ppm sulfur level in distillate products. The conversions of inhibitors must be accounted for during reactions. Catalyst and reaction configuration to reduce the inhibition by the gaseous products are the keys for deep refining.  相似文献   

3.
Sorbents with different Ni loading supported on silica–alumina (SiAl) and activated carbon (AC) were synthesized and tested for removal of sulfur compounds from a model diesel oil, containing nearly 250 ppmw S as benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT). A state-of-art Commercial Ni-based sorbent and two Norit activated carbons were also tested for comparison. Moreover, the influence on sorbents uptake capacity of the presence of aromatics in amounts representative of real diesel oils was studied. Both commercial and home-made materials performed worse in presence of aromatic compounds. Probably, the latter competed with the refractory sulfur compounds (DBT and 4,6-DMDBT) in the adsorption on active sites. As a first important result of the investigation the sorbents carrying 45% and 30% of Ni on SiAl showed a breakthrough uptake capacity of nearly, respectively, 2 and 2.6 times higher than Commercial sorbent as a consequence of their higher Ni dispersion and surface area. Moreover, activated carbons and the sample with 28%Ni on AC showed an even higher breakthrough uptake capacities. In particular, the deposition of nickel on activated carbon is an innovative approach which takes advantage of the selectivity of Ni towards S-species and the high adsorptive capacity of AC support.  相似文献   

4.
Adsorptive removal of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) from model diesel fuel with 20 ppmw total concentration of sulfur was investigated on polymer-derived carbons with incorporated heteroatoms of oxygen, sulfur and phosphorus. The materials before and after exposure to model diesel fuel were characterized using adsorption of nitrogen, thermal analysis, potentiometric titration, XPS and elemental analysis. The selectivities for DBT and DMDBT adsorption were calculated with reference to naphthalene. The results indicated that the presence of phosphorus, especially in the form of pyrophosphates and P2O5, increases the capacity and selectivity for removal of dibenzothiophenes. It also affects the adsorption mechanism. Phosphorus suppresses oxidation reactions of DBT and DMDBT. Owing to a possible location of bulky phosphorus groups in pore with sizes between 1 and 3 nm thiophenic molecules are strongly adsorbed there via dispersive forces. Acidic environment also enhances adsorption via acid–base interactions. Physical adsorption mechanism and stability of surface make these carbons attractive candidates for thermal regeneration.  相似文献   

5.
《分离科学与技术》2012,47(8):1208-1214
The FeCl3-containing Lewis-acidic ionic liquids (ILs) [C6mim]Cl/FeCl3(1:1.5), [C6mim]Cl/FeCl3(1:2), [C8mim]Cl/FeCl3(1:1.5), and [C8mim]Cl/FeCl3(1:2) were used as extractants for desulfurization of model fuel and gasoline fuel, respectively. The results demonstrate that these ILs are effective for the removal of sulfur compounds from model fuel under different mass ratio of IL to model fuel (1:1, 1:3, 1:5, 1:10) at 25°C. The extractive performance of ILs increased as the molar ratio of FeCl3 to [Cnmim]Cl(n = 6, 8) varied from 1:1 to 1:2. The selectivity of sulfur compounds by extraction process followed the order of dibenzothiophene (DBT)>benzothiophene (BT) > 4,6-dimethyldibenzothiophene (4,6-DMDBT). The sulfur removal of gasoline fuel containing sulfur content of 440.3 ppmw could be up to 85.8%; that is to say that the sulfur content of gasoline fuel varied from 440.3 ppmw to 62.4 ppmw after one extraction stage. Moreover, the [C6mim]Cl/FeCl3(1:2) can be recycled for at least 4 times with a little decrease in the desulfurization activity.  相似文献   

6.
Adsorption of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) from simulated diesel fuel with 20 ppmw total concentration of sulfur was investigated on polymer-derived carbon containing various amounts of oxygen and sulfur incorporated to the surface. Initial and exhausted carbons were characterized using adsorption of nitrogen, thermal analysis, potentiometric titration, XPS, mass spectroscopy and elemental analysis. Selectivities for DBT and DMDBT adsorption were calculated with reference to naphthalene. It was found that both the capacity and selectivity for DBT and DMDBT removal from model diesel fuel were affected by the content and arrangement of heteroatoms. Although both oxygen and sulfur containing groups enhance the capacity, the enhancing effects of surface chemistry were more pronounced on the carbon with sulfur incorporated to its matrix. This is linked to sulfur–sulfur interactions.  相似文献   

7.
The desulfurization of dibenzothiophene (DBT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and their mixture by lyophilized cells ofPseudomonas delafieldii R-8 was studied in the presence of dodecane. The desulfurization rate for 4,6-DMDBT was found to be about 40% in comparison with that for DBT. The desulfurization process for DBT and 4,6-DMDBT proceeded simultaneously without preference for either one. The desulfurization rate for each compound was decreased when they were mixed together. The extent of desulfurization of 4,6-DMDBT was increased with the increase of cell concentration and the decrease of the volume ratio of oil-to-water used. The specific desulfurization rate for 4,6-DMDBT could be reached to 10.4 mmol sulfur kg−1 (cell) h−1 [approximately 0.33 mg sulfur g−1 (cell) h−1].Pseudomonas delafieldii R-8 showed high desulfurization capability for straight-run diesel oil (containing 1,807 mg/L of sulfur). About 1,000 mg/L of sulfur in diesel oil was removed by resting cells of this strain in 24 h of reaction. The specific desulfurization rate was 8.75 mmol sulfur kg−1 (cell) h−1.  相似文献   

8.
A hydrogenation index (HI), measured in the hydrodesulfurization (HDS) of dibenzothiophene (DBT), is used to estimate the intrinsic hydrogenation selectivities of MoS2, Co0.1MoS2, and two supported HDS catalysts. The HI and catalyst activity for desulfurizing 4,6-diethyl-DBT follow the same trend: MoS2 ? Co0.1MoS2 ? supported catalysts. For desulfurizing a petroleum fraction rich in 4,6-alkyl-DBTs and 4-alkyl-DBTs, the activity decreases as follows: Co0.1MoS2 > supported catalysts ? MoS2. These results introduce an apparent conundrum: MoS2 has such a high hydrogenation power and activity for desulfurizing 4,6-diethyl-DBT, why does it perform poorly in real-feed tests? This conundrum is resolved by showing that an ultra-deep HDS catalyst requires an optimum balance between an intrinsic factor (hydrogenation function) and an environmental factor (tolerance of organonitrogen). Incorporating Co into MoS2 lowers the hydrogenation function of MoS2 and hence improves tolerance of organonitrogen. This conclusion corroborates the prediction of an early modeling study.  相似文献   

9.
The desulfurization of model gasoline containing 600 ppmw thiophene or dibenzothiophene (DBT) by selective adsorption over Ag+ exchanged mesoporous material Al-MSU-S was studied in a fixed adsorbent bed at ambient temperature and pressure. The results showed that the sulfur capacity increased with Al content incorporated in the silicate framework and Ag+ exchange can effectively improve the desulfurization performance. The best adsorbent, Ag+/20%Al-MSU-S, has adsorption capacity of 5 or 20 ml model gasoline containing thiophene or DBT per gram adsorbent, respectively, before the detection limit in our experiments, as a result of π-complexation. The adsorbent can be regenerated more than six times by simple calcination in air at 350 °C without obvious losing the sulfur adsorption capacity.  相似文献   

10.
Catalytic oxidation of dibenzothiophene (DBT) in decalin was performed using an oil-soluble oxidant, cumene hydroperoxide (CHP), over molybdenum oxide (MoO3) supported on silica. The effects of MoO3 loading, reaction time and the molar ratio of CHP/DBT were investigated. At a MoO3 loading of 15 wt%, the conversion of DBT reached 82% at 70 °C, WHSV 30 h?1, and O/S molar ratio 3. Alkaline earth metals, such as Ca, Ba, Sr and Mg were introduced on the surface of silica, prior to the impregnation of MoO3. The results showed that the activity in the oxidation of DBT with CHP decreased in the order: MoO3/Ca-SiO2 > MoO3/Ba-SiO2 > MoO3/SiO2 > MoO3/Sr-SiO2 > MoO3/Mg-SiO2. The MoO3/Ca-SiO2 catalysts were characterized by XRD. The DBT conversions on MoO3/Ca-SiO2 catalysts with various Ca/Mo ratios were studied. When the Ca/Mo ratio was 0.05, the DBT conversion was the highest (95%) at 60 °C, WHSV 30 h?1, and O/S molar ratio 3.0.  相似文献   

11.
Four benzyl‐based ionic liquids (ILs) were synthetized and used for deep desulfurization of model oil and real diesel fuel. The removal efficiencies of benzothiophene (BT) and dibenzothiophene (DBT) with [Bzmim][NTf2] and [Bzmim][SCN] as extractants are higher than that with [Bzmp][NTf2] and [Bzmp][SCN] as extractants. The desulfurization capability follows the Nernst's Law. A reactive extraction mathematical model for desulfurization was established. An oxidative‐extractive two‐step deep desulfurization method was developed. DBT was first oxidized by H2O2 with CH3COOH as catalyst and then the unoxidized DBT and uncrystallized dibenzothiophene sulfoxide (DBTO2) in model oil were extracted by [Bzmim][NTf2], and finally the removal efficiency was 98.4% after one‐stage extraction. Besides, the removal efficiency of 4,6‐DMDBT was 96.4% after oxidation and one‐stage extraction processes. Moreover, the oxidative‐extractive two‐step deep desulfurization method was also effective for desulfurization of diesel fuel. The removal efficiency of sulfur reached up to 96% after oxidation and three‐stage cross‐current extraction processes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4023–4034, 2016  相似文献   

12.
Aiming at the deep desulfurization of the diesel oil, a comparison of the catalytic effects of several Keggin type POMs, including H3PWxMo12?xO40 (x = 1, 3, 6), Cs2.5H0.5PW12O40, and H3PW12O40, was made, using the solution of DBT in normal octane as simulated diesel oil, H2O2 as oxidant, and acetonitrile as extractant. H3PW6Mo6O40 was found to be the best catalyst, with a desulfurization efficiency of 99.79% or higher. Hence, it is promising for the deep desulfurization of actual ODS process. The role of the main factors affecting the process including temperature, O/S molar ratio, initial sulfur concentration, and catalyst dosage, was investigated, whereby the favourable operating conditions were recommended as T = 60 °C, O/S = 15, and a catalyst dosage of 6.93 g (H3PW6Mo6O40)/L (simulated diesel). With the aid of GC–MS analysis, sulfone species was confirmed to be the only product after reaction for 150 min. Furthermore, macro-kinetics of the process catalyzed by H3PW6Mo6O40 was studied, from which the reaction orders were found to be 1.02 to DBT and 0.38 to H2O2, and the activation energy of the reaction was found to be 43.3 kJ/mol. Moreover, the catalyst recovered demonstrated almost the same activity as the fresh.  相似文献   

13.
Dielectric barrier discharges (DBD) were used for the degradation of carbamazepine (CBZ) in aqueous solution. The electric discharge was generated either ex situ or in situ directly on the water surface. To maintain the same ozone concentration of 40 ppm in both instances, the power injected was 0.7 W in the ex situ discharge and 12 W in the in situ discharge. The results showed 100% CBZ removal after 3 min of treatment with the ex situ discharge, while the in situ discharge only removed 81% of the CBZ after 60 min. According to measurements of UV absorbance at 285 nm and 254 nm, and of total organic carbon, the ex situ discharge system also proved to be more effective than the in situ system. The measurement of nitrogen oxides in both gaseous and liquid phases indicated that high energy in situ discharges produced a large amount of NOx. These species contributed to decreased pH and significantly slowed the CBZ oxidation rate, due to their competition with ozone. Production of NOx should be avoided when using the DBD technique for wastewater treatment.  相似文献   

14.
An efficient process to remove organic sulfur compounds from model fuel has been explored. Dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) can be completely oxidized into their corresponding sulfones by H2O2 over 14 wt.% MoO3/γ-Al2O3 catalyst under mild conditions in 15 min. The effects of solvent, initial sulfide concentration, loading of MoO3 and amount of catalyst on oxidative removal of DBT were studied. The employments of solvents have decreased the reaction rate of DBT, which can be attributed to the competitive adsorption between the sulfide and solvent. The oxidative reactivity increases in the order of thiophene (Th) < benzothiophene (BT) < DBT < 4, 6-DMDBT. The catalyst can be regenerated by methanol washing at 333 K.  相似文献   

15.
An innovative approach for desulfurisation of fuels is proposed. It relies on the formation of recognition sites, complementary to oxidized sulfur-containing compounds, on cross-linked chitosan microspheres and electrospun chitosan nanofibers using the molecularly imprinted polymer technique. Benzothiophene sulfone (BTO2), dibenzothiophene sulfone (DBTO2) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO2) were used as templates for the preparation of molecularly imprinted polymers (MIPs). The possible molecular interactions between imprinted chitosan adsorbent and oxidized sulfur-containing compounds were investigated by molecular modeling using density functional theory (DFT) and results indicated that interactions took place via hydrogen bonding. The molecularly imprinted polymer adsorbents (cross-linked microspheres and electrospun nanofibers) gave better selectivity for the target sulfonated compounds and the adsorption isothermal studies followed the Freundlich model. Maximum adsorption capacities of 8.5 ± 0.6 mg/g, 7.0 ± 0.5 mg/g and 6.6 ± 0.7 mg/g were observed for model BTO2, DBTO2 and 4,6-DMDBTO2 respectively at 1 mL/h when imprinted nanofibers were employed, and the imprinted microspheres gave maximum adsorption capacity of 4.9 ± 0.5 mg/g, 4.2 ± 0.7 mg/g and 3.9 ± 0.6 mg/g for BTO2, DBTO2 and 4,6-DMDBTO2 respectively. Application of the nanofibers to oxidized hydro-treated fuel under continuous flow adsorption system at 1 mL/h indicated that 84% of sulfur was adsorbed, with adsorption capacity of 2.2 ± 0.2 mg/g.  相似文献   

16.
Phosphate promoted Na2WO4/Al2O3 catalyst with 10 wt.% tungsten was prepared by simple impregnation method. Analytical characterization results showed that tungstate and phosphate were uniformly dispersed in alumina matrix and its structural properties were preserved. The effect of phosphate as promoter in catalyst activity was studied using dibenzothiophine (DBT) as model oil and the results reveal that it plays an important role in oxidation activity of Na2WO4/Al2O3 catalyst, in addition, the catalytic activity of Na2WO4/Al2O3 was increased gradually with increasing phosphorus contents up to 2.5 wt.%. The catalyst was recycled and the results show that no significant decrease in catalyst activity was observed even after five recycled runs. We also applied our catalyst in oxidative desulfurization (ODS) of FCC diesel oil (with sulfur contents 4100 ppm), and more than 92% of sulfur was removed from diesel oil under mild reaction conditions.  相似文献   

17.
《Catalysis communications》2007,8(11):1609-1614
A new, novel, efficient, and stable green catalyst has been successfully used as a catalyst in aqueous ozone decomposition in acidic medium. The catalyst was characterized by using X-ray fluorescence (XRF), transmission electron microscope (TEM), scanning electron microscope (SEM), and X-ray diffraction (XRD) techniques. The sludge mainly consists of various metal and non-metal oxides. The effect of various experimental parameters such as catalyst loading, initial ozone concentrations, and various metal oxide catalysts on the decomposition of ozone was investigated. The decomposition of dissolved ozone was substantially enhanced by increasing the catalyst loading from 125 to 750 mg and by increasing the initial ozone concentration. The ozone decomposition efficiencies of Al2O3, SiO2, TiO2, Fe2O3, ZnO, and sludge have been studied and the efficiencies of these catalysts were found to be in the following order: ZnO  sludge > TiO2 > SiO2 > Al2O3  Fe2O3. The catalytic stability was also investigated for up to four successive cycles and it was found that the catalyst was stable and ozone did not affect the catalyst morphology and its composition. However, the surface area of the catalyst increased after 1st cycle then it became stable. It was concluded that the sludge powder used in this study was a promising catalyst for aqueous ozone decomposition.  相似文献   

18.
In order to meet the approved sulfur emission standards, it is necessary to develop alternative methods for deep desulfurization of fuels and sour petroleum fractions. In this work a functionalized multi-walled CNT supported MnOx nanocatalyst (MnOx/FMWNT) has been synthesized and its performance to enhance the efficiency of oxidative desulfurization (ODS) process for deep desulfurization of sour naphtha has been investigated. The synthesized MnOx/FMWNT heterogeneous nanocatalyst shows excellent performance regarding the oxidation of sulfur impurities in naphtha petroleum cut to corresponding sulfones. The synthesized catalyst is characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), X-ray diffraction (XRD) and H2-temperature programmed reduction (H2-TPR) methods. The performance test of the synthesized nanocatalyst at 25 °C and atmospheric pressure indicates a sulfur removal efficiency of 99.85% within 30 min. The proposed ODS technique allows a substantial cost reduction as compared to existing energy intensive desulfurization processes and can be used for establishing the new large scale catalytic reactors for deep desulfurization of petroleum fractions.  相似文献   

19.
《分离科学与技术》2012,47(6):819-826
A new class of green solvents, known as ionic liquids (ILs), has recently been the subject of intensive research on the extractive desulfurization of fuel oils because of the limitation of the traditional hydrodesulfurization method in catalytically removing thiophenic sulfur compounds. In this work, four thiazolium-based ILs, that is, 3-butyl-4-methylthiazolium dicyanamide ([BMTH][DCA]), 3-butyl-4-methylthiazolium thiocyanate ([BMTH][SCN]), 3-butyl-4-methylthiazolium hexafluorophosphate ([BMTH][PF6]), and 3-butyl-4-methylthiazolium tetrafluoroborate ([BMTH][BF4]), are synthesized. The extractive capability of these ILs in removing thiophene (TS) and dibenzothiophene (DBT) from model fuel oils is investigated. [BMTH][DCA] and [BMTH][SCN] present better extractive desulfurization capability than [BMTH][BF4] and [BMTH][PF6], which may be ascribed to the additional π?π interaction between –C≡N (in [BMTH][DCA] and [BMTH][SCN]) and thiophenic ring (in TS and DBT); DBT in diesel fuel is more efficiently extracted than TS in gasoline. [BMTH][DCA] offers the best desulfurization results, where 64% and 45% sulfur removal are obtained for DBT and TS, respectively, at IL:oil mass ratio of 1:1, 25°C, 20 min. [BMTH][DCA] is thus selected to systematically investigate the effects of temperature, IL:oil mass ratio, initial sulfur content, multiple-extraction, and IL regeneration on desulfurization. The mutual solubility of [BMTH][DCA] with fuel oil is also determined. It is observed that the desulfurization capability is not too sensitive to temperature and initial sulfur content, which is desired in industrial application; the sulfur contents in gasoline and diesel fuel are reduced from 558 ppm to 20 ppm (after 5 cycles) and from 547 ppm to 8 ppm (after 4 cycles), respectively. This work may show a new option for deep desulfurization of fuel oils.  相似文献   

20.
This work examines the effects of modification of activated carbons (ACs) by HNO3 oxidation and gas-phase O2 oxidation, respectively, on the liquid-phase adsorption of sulfur compounds in diesel fuel. The adsorption characteristics of the oxidized and the original AC samples were evaluated in a fixed-bed flow system by using a model diesel fuel containing 400 parts per million by weight (ppmw) of sulfur as thiophenic compounds and 10 wt% of aromatics in a paraffinic solvent. The pore structure and surface properties of the AC samples were characterized by N2 adsorption, SEM, FTIR, XPS and surface pH measurements. The adsorptive selectivity factor of the AC samples increases in the order of benzothiophene (BT) ≈ naphthalene (Nap) < 2-methyl naphthalene (2-MNap) < dibenzothiophene (DBT) < 4-methyldibenzothiophene (4-MDBT) < 4,6-dimethyldibenzothiophene (4,6-DMDBT). It was found that the HNO3 oxidation was an efficient method in improvement of the adsorption performance of the AC for sulfur compounds. The improved adsorption performance upon the HNO3 oxidation can be attributed mainly to an increase in the acidic oxygen-containing functional groups. However, the improved adsorption capacity upon oxidation is unlikely due to an increase in mesoporous or microporous surface/volume, although such attribution might have been inferred from the literature. An excellent correlation between the concentration of the surface oxygen-containing functional groups and the adsorption capacity per unit area as well as a good relationship between the adsorption capacity and the surface pH value were observed in this work, which suggest that the adsorption of the sulfur compounds over AC from the liquid hydrocarbon fuel may involve an interaction of the acidic oxygen-containing groups on AC with the sulfur compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号