首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2017,43(10):7627-7635
The α/β-Bi2O3 photocatalyst was successfully synthesized by a novel solvothermal-calcination method. The physical and chemical properties of as-prepared samples were characterized based on XRD, XPS, SEM, TEM, EDS, BET, UV–vis DRS and PL techniques. The synthesized α/β-Bi2O3 photocatalyst exhibited enhanced photocatalytic activity for 17α-ethinylestradiol (EE2), and 96.9% of EE2 was degraded after only 24 min of visible-light irradiation using α/β-Bi2O3 as photocatalyst. The reaction rate constant over α/β-Bi2O3 photocatalyst was 1.42, 2.23, 9.22 and 54.1 times higher than pure β-Bi2O3, α-Bi2O3+β-Bi2O3, α-Bi2O3 and P25 respectively. Effect of catalyst dosage and pH value was investigated. The possible photocatalytic mechanism has been discussed on the basis of the theoretical calculation and the experimental results. α/β-Bi2O3 was a fairly stable and efficient photocatalyst under the studied experimental conditions, proving that the α/β-Bi2O3 photocatalyst was a promising photocatalyst for the practical application.  相似文献   

2.
3.
Nanocomposites based on cadmium sulfide (CdS) and Na-montmorillonite (Na+-Mt) were prepared by a hydrothermal method using Cd[NH2CSNH2]SO4 complex as precursor of CdS which was derived from cadmium sulfate and thiourea. These nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR) and X-fluorescence (XF). The nanocomposites consist of nanosized CdS pillars, which tend to increase in size as the amount of complex precursor increases. The CdS crystals have a hexagonal symmetry. The photocatalytic activity of the obtained CdS–Mt nanocomposites is improved significantly compared to that of the Mt and pure CdS. The resulting CdS–Mt nanocomposites could degrade methylene blue and rhodamine 6G under near UV–visible irradiation.  相似文献   

4.
A novel TiO2  xNx/BN composite photocatalyst was prepared via a facile method using melamine–boron acid adducts (M·2B) and tetrabutyl titanate as reactants. The morphological results confirmed that nitrogen-doped TiO2 nanoparticles were uniformly coated on the surface of porous BN fibers. A red shift of absorption edge from 400 nm (pure TiO2) to 520 nm (TiO2  xNx/BN composites) was observed in their UV–Vis light absorption spectra. The TiO2  xNx/BN photocatalysts exhibited enhanced photocatalytic activity for the degradation of Rhodamine B (RhB) and the highest photocatalytic degradation efficiency reached 97.8% under visible light irradiation for 40 min. The mechanism of enhanced photocatalytic activity was finally proposed.  相似文献   

5.
6.
AgBr@Ag/TiO2 core–shell photocatalysts were fabricated by a facile green route. TiO2 was uniformly coated on the surface of cubic AgBr, making AgBr@Ag/TiO2 core–shell photocatalyst show excellent hydrothermal stability. Beneficial from that Ag nanoparticles and AgBr can respond to visible light and core–shell structure can effectively separate the photogenerated electrons and holes, AgBr@Ag/TiO2 core–shell composites exhibited outstanding visible light photocatalytic activity for the degradation of acid orange 7. The activity of AgBr@Ag/TiO2 is related to the thickness of TiO2 shell, and the optimal shell thickness for obtaining the highest activity is 10 nm.  相似文献   

7.
《Ceramics International》2017,43(6):5292-5301
The development of heterostructured semiconductor photocatalysts makes a noteworthy advancement in environmental purification technology. In this work, a novel heterostructured Bi2O3−CeO2−ZnO, fabricated by a combination of microwave-assisted hydrothermal and thermal decomposition methods, showed an enhanced photocatalytic activity for Rhodamine B (RhB) degradation under sunlight, as compared to pristine ZnO, Bi2O3, CeO2, and commercial Degussa TiO2-P25. The obtained products were thoroughly characterized by various techniques including X- ray powder diffraction (PXRD), field emission scanning electron microscopy (FE-SEM), elemental color mapping, energy-dispersive X-ray spectroscopy (EDAX), Raman spectrometry, Fourier transform infrared (FT-IR) spectroscopy, UV–visible diffuse reflectance spectroscopy (UV–vis DRS), and photoluminescence (PL) spectroscopy. PXRD analysis reveals that the heterostructure has the monoclinic lattice phase of α-Bi2O3, the cubic phase of CeO2 and the hexagonal wurtzite phase of ZnO. FE-SEM images show that Bi2O3−CeO2−ZnO has an ordered mixture of nanorod and nanochain structures. EDAX, elemental color mapping, Raman and FT-IR analyses confirm the successful formation of the heterostructured Bi2O3−CeO2−ZnO. The UV–Vis DRS results demonstrate that Bi2O3−CeO2−ZnO exhibits wide visible-light photoabsorption in 400–780 nm range. Moreover, the reduction in PL intensity of the heterostructured Bi2O3−CeO2−ZnO, when compared to the pristine Bi2O3, CeO2, and ZnO, indicates enhanced charge separation. The study on the mechanism displayed that the improved photocatalytic activity of Bi2O3−CeO2−ZnO could be attributed to (1) the efficient separation of photoinduced electrons and holes of the photocatalysts, caused by the vectorial transfer of electrons and holes among ZnO, CeO2 and Bi2O3, and (2) the wide visible-light photoabsorption range. This study introduces a new class of promising sunlight-driven photocatalysts.  相似文献   

8.
《Dyes and Pigments》2008,76(3):714-722
A novel sol–gel-derived titanium dioxide nanostructure composite has been prepared by spin-coating and investigated for the purpose of producing films. The processing of the composite sol–gel photocatalysts involved utilizing of precalcinated nanopowder titanium dioxide as filler mixed with sol and heat treated. The sol solution was prepared by adding titanium tetra isopropoxide (Ti(OPr)4 or TTP) to a mixture of ethanol and HCl 35.5% (mole ratio TTP:HCl:EtOH:H2O = 1:1.1:10:10), then a solution of 2 wt% methylcellulose was added and stirred at room temperature. Precalcinated TiO2 nanopowder was dispersed in the sol and the prepared mixture was deposited on the microscope glass slide by spin-coating. The inhomogeneity problem in preparation of composite film which causes peeling off and cracking after calcination due to the shrinkage of the films with thermal treatment were overcome by using methylcellulose (MC) as a dispersant. The composite heat treated at approximately 500 °C has the greatest hardness value. Surface morphology of composite deposits by scanning electron microscopy (SEM) showed remarkable increase in the composite surface area. Evaluation of the adhesion and bonding strength between the coating and substrate was carried out by the scratch test technique. The minimum load which caused the complete coating removal, for composite thick film was 200 g/mm2 which indicates a strong bond to the substrate. Photocatalytic activity of the composite film was evaluated through the degradation of a textile dye, Light Yellow X6G (C.I. Reactive Yellow 2) as a model pollutant and were compared with those of similar composite thick film without MC, thin film of TiO2 and TiO2 nanopowder. The results show that the photocatalytic activity and stability of the composite films are higher than those of nanopowder TiO2. However, a remarkable increase in the composite surface and good mechanical integrity make this composite film a viable alternative for commercial applications.  相似文献   

9.
Wen Y  Ding H  Shan Y 《Nanoscale》2011,3(10):4411-4417
Great efforts have been made to develop efficient visible light-activated photocatalysts in recent years. In this work, a new nanocomposite consisting of anatase TiO(2), Ag, and graphene was prepared for use as a visible light-activated photocatalyst, which exhibited significantly increased visible light absorption and improved photocatalytic activity, compared with Ag/TiO(2) and TiO(2)/graphene nanocomposites. The increased absorption in visible light region is originated from the strong interaction between TiO(2) nanoparticles and graphene, as well as the surface plasmon resonance effect of Ag nanoparticles that are mainly adsorbed on the surface of TiO(2) nanoparticles. The highly efficient photocatalytic activity is associated with the strong adsorption ability of graphene for aromatic dye molecules, fast photogenerated charge separation due to the formation of Schottky junction between TiO(2) and Ag nanoparticles and the high electron mobility of graphene sheets, as well as the broad absorption in the visible light region. This work suggests that the combination of the excellent electrical properties of graphene and the surface plasmon resonance effect of noble metallic nanoparticles provides a versatile strategy for the synthesis of novel and efficient visible light-activated photocatalysts.  相似文献   

10.
Titanium dioxide (TiO2)–fullerene (C60) composite is prepared from TiO2 and β-cylcodextrin (CD) encapsulated C60 using the solar light irradiation. The absorption of the composite extends to the visible light region due to the charge transfer from CD and C60 to TiO2. The composite shows reduced charge recombination compared to that of the bare TiO2 and TiO2/CD. The rate constant values for the photodegradation reactions of methylene blue and 4-chlorophenol (4-CP) are significantly higher (∼2–5 times) for the composites with 0.5 and 1.5 wt.% C60 compared to that of the bare TiO2. Photocatalytic studies in the presence of scavengers reveal that the composites produce higher amount of reactive oxygen species (ROS). The enhanced photocatalytic activity of the composites is attributed to the visible light responsiveness, reduced charge recombination and increased formation of ROS. The photodegradation of 4-CP is significantly faster in the presence of the composite with 1.5 wt.% C60 and is attributed to the synergistic effect of higher adsorption and increased ROS formation. The ROS formation by C60 is possible because of the non-aggregated state of C60 molecules in the composite and is assigned to the method which employs CD molecules to disperse C60 in the composite.  相似文献   

11.
Graphene oxide (GO), BiOBr and graphene–BiOBr nanosheets composites (BiOBr–RG) were synthesized and characterized. It can be found that except for BiOBr nanosheets with pure tetragonal phase were grown uniformly on the graphene surface, little graphene layer also can load on the surface of BiOBr evenly. And we found that the graphene can change the conduction band (CB) and valence band (VB) of BiOBr toward enhanced photocatalytic activity for reactive oxygen species (ROS) generation than that of BiOBr under visible-light irradiation.  相似文献   

12.
The influence of zinc oxide content on the formation of chlorapatite-based composite nanopowders in the mechanically alloyed CaO–CaCl2–P2O5–ZnO system was studied. To mechanosynthesize composite nanopowders, different amounts of hydrothermally synthesized zinc oxide nanoparticles (0–10 wt%) were mixed with ingredients and then were mechanically activated for 5 h. Results showed that in the absence of zinc oxide, high crystalline chlorapatite nanopowder was obtained after 5 h of milling. In the presence of 4 and 7 wt% zinc oxide, the main product of milling for 5 h was chlorapatite–zinc oxide composite nanopowder. On increasing the zinc oxide content to 10 wt%, composite nanopowder was not formed due to improper stoichiometric ratio of the reactants. The crystallite size, lattice strain, volume fraction of grain boundary, and crystallinity degree of the samples fluctuated significantly during the milling process. In the presence of 7 wt% zinc oxide, the crystallite size and crystallinity degree reached 51±2 nm and 79±2%, respectively. During annealing at 900 °C for 1 h, the crystallization of composite nanopowder occurred and as a result the crystallinity degree rose sharply to 96±3%. In addition, the crystallite size increased to 77±2 nm after annealing at 900 °C. According to SEM and TEM images, the composite nanopowder was composed of both ellipse-like and polygonal particles with a mean size of about 98 nm.  相似文献   

13.
《Ceramics International》2016,42(6):7014-7022
Highly ordered TiO2 and WO3–TiO2 nanotubes were prepared by one-step electrochemical anodizing method and cobalt has been successfully deposited on these nanotubes by photo-assisted deposition process. The morphology, crystal structure, elemental composition and light absorption capability of samples were characterized by field emission scanning electron microscope, X-ray diffraction, energy dispersive X-ray spectrometer and ultraviolet–visible spectroscopy methods. All cobalt loaded samples show an appearance of red shift relative to the unloaded samples. The degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of these novel visible-light-responsive photocatalysts. Results showed that the photocatalytic activity of bare WO3–TiO2 samples is higher than that with undoped TiO2 sample. Compared with unmodified TiO2 and WO3–TiO2, the Co/TiO2 and Co/WO3–TiO2 samples exhibited enhanced photocatalytic activity in the degradation of methylene blue. Kinetic research showed that the reaction rate constant of Co/WO3–TiO2 is approximately 2.26 times higher than the apparent reaction rate constant of bare WO3–TiO2. This work provides an insight into designing and synthesizing new TiO2–WO3 nanotubes-based hybrid materials for effective visible light-activated photocatalysis. The catalysts prepared in this study exhibit industrially relevant interests due to the low cost and high photocatalytic activity.  相似文献   

14.
《Ceramics International》2016,42(5):5766-5771
In this work, TiO2–reduced graphene oxide (RGO) nanocomposites were successfully produced by an ultrasonication-assisted reduction process. The reduction of graphene oxide (GO) and the formation TiO2 crystals occurred simultaneously. The synthesized nanocomposite was characterized by SEM, EDX, Raman spectroscopy, FTIR, XRD, XPS, UV–vis spectroscopy, photoluminescence spectrometer and electrochemical impedance spectroscopy. As a result of the introduction of RGO, the light absorption of octahedral TiO2 was markedly improved. The photocatalytic results revealed that weight percent of RGO has substantial influence on degradation of Rhodamine B under visible light irradiation. The enhancement of the photocatalytic activity can be attributed to the enhancement of the visible-light irradiation harvesting and efficiently separation of the photogenerated charge carriers. Meanwhile, upon the RGO loading, the photoelectric conversion efficiency of TiO2–RGO nanocomposite modified electrode was also highly improved.  相似文献   

15.
Novel α-Fe2O3/TiO2 composite hollow spheres were successfully synthesized by a template-assisted precipitation reaction using urea as a precipitating agent and carbon spheres as templates in a mixed solvent of water and ethanol, and then calcined at 400 °C for 4 h. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption–desorption isotherms, and vibrating sample magnetometer. The influence of calcination temperature and the molar ratio of titanium to iron (R) on the photocatalytic activity of the samples was investigated. The results indicated that the composite spheres show magnetic characteristics at room temperature and good photocatalytic activity under visible-light irradiation compare to the single-component α-Fe2O3 particles. This method can be further applied to synthesize nanocomposites of magnetic metal oxide and other metal oxide.  相似文献   

16.
Flower-like SnS2 decorated with MgFe2O4 nanoparticles and reduced graphene oxide (rGO) nanosheets were successfully synthesized by a facile solvothermal method. The morphological and crystal structure results confirmed that MgFe2O4 nanospheres were uniformly anchored on the surface of SnS2 flower-like structure with the decoration of rGO nanosheets. The UV–vis diffuse reflectance spectra indicated that the SnS2–MgFe2O4/rGO photocatalyst had a strong visible light absorption. The sample exhibited the highest photocatalytic activity for the degradation of methylene blue under visible light irradiation. The mechanism of improved photocatalytic activity was finally proposed.  相似文献   

17.
TiO2/ZrxTi1−xO2 composite films have been prepared by sol–gel method and their photocatalytic activity and stability have been investigated for the first time. Their surface morphology and average surface roughness are characterized by AFM. TiO2 P25 and pure sol–gel TiO2 films have also been prepared and investigated for comparison. Films with smaller crystallite size and larger surface roughness have been obtained by introduction of ZrxTi1−xO2 intermediate layers between TiO2 layers and substrate in the composite films. The results show that the photocatalytic activity and stability of the composite films are higher than those of pure sol–gel TiO2 and TiO2 P25 films.  相似文献   

18.
19.
In this paper, synthesis of novel super hard and high performance composites of titanium silicon carbide–cubic boron nitride (Ti3SiC2–cBN) was evaluated at three different conditions: (a) high pressure synthesis at ~ 4.5 GPa, (b) hot pressing at ~ 35 MPa, and (c) sintering under ambient pressure (0.1 MPa) in a tube furnace. From the analysis of experimental results, the authors report that the novel Ti3SiC2–cBN composites can be successfully fabricated at 1050 °C under a pressure of ~ 4.5 GPa from the mixture of Ti3SiC2 powders and cBN powders. The subsequent analysis of the microstructure and hardness studies indicates that these composites are promising candidates for super hard materials.  相似文献   

20.
A well-defined, stimuli-responsive tetrapolymer with pH-responsive characteristics and targeting specificity has been synthesized by radical copolymerization of methacrylic acid, N-(2-hydroxypropyl)methacrylamide, methacryloyl glycylglycyl sulfamethoxazole, and N-(methacryloyl)glycylglycine 4-nitrophenyl ester. The structure and properties of tetrapolymer were investigated by NMR, FT-IR, UV–visible absorption, TEM and gel permeation chromatography. Incorporation of maleimide linker into tetrapolymer facilitates its conjugation with antibody fragments, as demonstrated by the solid-phase immunoassay experiments. The TEM image shows that tetrapolymer had self-assembled a spherical micelle with a diameter ranging from 50 to 150 nm. Altering the pH of the solution leads to a different extent of aggregation at pH 6.5–3.5, responding in accordance with the properties associated with the extracellular environment of solid tumors and endocytosis. Furthermore, fluorescence spectroscopy indicated a critical micelle concentration (CMC) of 1 mg/mL. Because of the solvation and ionization effects, the tetrapolymer showed considerably enhanced antibacterial activities against Escherichia coli in the presence of DMSO and the antibacterial activity increased with decreasing pH value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号