首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A commercial hydrotreating nickel molybdate/alumina catalyst was used for the direct conversion of natural gas (NG) into COx-free hydrogen and a co-valuable product of multi-walled carbon nanotubes (MWCNTs). The catalytic runs were carried out atmospherically in a fixed-bed flow reactor. The effect of reaction temperature between 600 and 800 °C, and dilution of the NG feed with nitrogen as well as pretreatment of the catalyst with hydrogen were investigated. At a reaction temperature of 700 °C and dilution ratio of NG/N2 = 20/30, the optimum yield of H2 (~80%) was obtained with higher longevity. However, using the feed ratio of NG/N2 = 30/20, the optimum yield of MWCNTs was obtained (669%). X-ray diffraction pattern for the catalyst after the reaction showed that the MWCNTs were grown on the catalyst at all reaction temperatures under study. TEM pictures revealed that the as-grown MWCNTs at 600, 650 and 800 °C are short and long with a low graphitization degree. At 700 °C a forest of condensed CNTs is formed, whereas both carbon nanofibers and CNTs were formed at 750 °C.  相似文献   

2.
H-ZSM-5 zeolite catalysts were doped with 2%, 3% and 4%HF to be used for investigating their activities and selectivities for xylenes production and for para-xylene maximization at temperatures of 300–500 °C via toluene disproportionation. This doping caused pore size modification of the H-ZSM-5 catalyst. The reaction was carried out in a fixed bed flow type reactor. The ratio of produced para-xylene relative to its thermodynamic composition reached as high as 3.29 at 300 °C on the 4%HF doped H-ZSM-5 catalyst although this catalyst possessed the lowest amount of the largest pores (3.0–5.7 nm) and the smallest pores (0.4–1.7 nm). The overall activities of the catalysts were decreased with an increase in HF doping because of diffusion restriction. The kinetics of the reaction were simply treated and found to give Ea and ΔS1 values compatible with the characterization data of the catalysts.  相似文献   

3.
《Food Control》2007,18(1):1-4
The simplification of the cleaning process of plastic containers used in the storage and/or distribution of fruits or vegetables is important. We coated a plastic container with an apatite-coated titanium dioxide photocatalyst (TiO2–Ap container), and examined its disinfecting efficacy under UV irradiation from black light. The disinfecting efficacy of the TiO2–Ap container on diluted drops evaporated from spinach (suspension) was examined. Changes in the microbial populations of the total aerobic bacteria, coliform bacteria, and moulds and yeasts in the TiO2–Ap container were assayed at 25 °C for 24 h (UV-A intensity of 0.2 and 0.4 mW cm−2). The results showed that all of the microbial populations in the TiO2–Ap container decreased with irradiation time and then reduced to uncountable levels. It was found that the increase in UV-A intensity enhanced the disinfecting efficacy.  相似文献   

4.
Rice husk silica (RHS) was extracted from local rice husk by acid digestion and burning at 650 °C. RHS-Ni catalyst was prepared by dissolving RHS in 1 N NaOH and titrating with 3 N HNO3 containing 10 wt.% Ni2+. The organic modifiers, either p-amino benzoic acid (A) or p-phenylenediamine (PDA) were incorporated in 5 wt.% and reduced in H2 flow. Investigation of the three catalysts, (RHS-Ni)R350, (RHS-Ni–A)R350 and (RHS-Ni–PDA)R350, confirmed good dispersion of Ni nanoparticles; all catalysts were amorphous. The BET surface areas increased in the order: (RHS-Ni)R350 < (RHS-Ni–A)R350 < (RHS-Ni–PDA)R350 with controlled pore sizes. The as-prepared catalysts were applied for both hydroconversion of cyclohexene with molecular H2 and ethanol dehydrogenation, using a flow-type reactor, at different temperatures. The activity in cyclohexene hydroconversion and selectivity to cyclohexane depended upon the reaction temperature; at t < 150 °C, the increased hydrogenation activity was referred to the formed SiO2–Ni–amine complex, pore regulation as a prime requirement for H2 storage and homogeneous distribution of incorporated Ni nanoparticles. At t > 150 °C, the backward dehydrogenation pathway was more favored, due to unavailability of H2; the process became structure-sensitive. In ethanol conversion, the prevailing dehydrogenation activity of organically modified catalyst samples was encouraged by improved homogeneous distribution of Ni nanoparticles and created micropre system.  相似文献   

5.
Ozonation is extensively applied in the treatment of drinking water and wastewater due to the powerful oxidation potential of ozone. Heterogeneous catalytic ozonation (HCO) of wastewater proceeds through hydroxyl radicals as the oxidation species. The effect of ozonation alone and combined with catalysts in the presence and absence of UV-radiation was investigated to reuse the biologically pretreated gas-station wastewater instead of fresh water. Two types of catalysts: titanium dioxide (TiO2) and activated carbon (AC) were studied. The concentration of catalyst, dark adsorption, reaction time and the improvement of biodegradability were studied. The combination of catalysts and ozonation reveals a significant improvement in the removal of contaminants present in wastewater by using the ozonation, adsorption or photocatalysis systems. Maximum dissolved organic carbon (DOC) removal of 91% was achieved by the combination of ozone, TiO2 and the UV-radiation system. But, an increase in biodegradability from 0.12 to 0.33 was realised with ozone and the TiO2 system. Furthermore, the biodegradability was increased with increasing catalyst concentration combined with ozone up to 1 g/L with TiO2 and 0.5 g/L with AC.  相似文献   

6.
Large quantities of catalysts are used in the Egyptian refining industry for the purification and upgrading of various petroleum streams. These catalysts gradually lose activity through deactivation with time and the spent catalysts were usually discarded as solid waste. On the other hand, waste lube oil contains heavy metals coming from undergirded base oil and additives, these metals have carcinogenic effect and cause serious environmental problems. Studies are conducted on the reclamation of metals, rejuvenation and reuse of the spent hydrotreating catalyst (Mo–Ni/Al) which have been used in re-refining of waste lube oil at Alexandria Petroleum Company. Three leaching solvents were used: oxidized oxalic acid, benzoic acid and boric acid at different concentrations (4%, 8% and 16%), different oxidizing agents (H2O2 and Fe(NO3)3) and different modes of addition of oxidizing agents (batch and continuous). The results indicated that 4% oxalic acid + 5% Fe(NO3)3 at continuous addition of oxidizing agents was the most efficient leaching solvent to facilitate metal removal and rejuvenate catalyst. The fresh catalyst was applied for re-refining of waste lube oil under different reaction temperatures (320–410) °C in order to compare the hydrodesulphurization (HDS) activity with both the fresh, treated and spent catalysts. The results indicated that the rejuvenation techniques introduce a catalyst have HDS activity nearly approach to that the fresh of the same type.  相似文献   

7.
This study evaluated the effectiveness of a supercritical carbon dioxide (SCCO2) system, with a gas–liquid porous metal contactor, for reducing Escherichia coli K12 in diluted buffered peptone water. 0.1% (w/v) buffered peptone water inoculated with E. coli K12 was processed using the SCCO2 system at CO2 concentrations of 3.1–9.5 wt%, outlet temperatures of 34, 38, and 42 °C, a system pressure of 7.6 MPa, and a flow rate of 1 L/min. Increased CO2 concentrations and temperatures significantly (P < 0.05) enhanced microbial reduction. A maximum reduction of 5.8-log was obtained at 8.2% CO2 and 42 °C. To achieve a 5-log reduction of E. coli K12 in 0.1% buffered peptone water, minimum CO2 concentrations of 9.5%, 5.5%, and 5.3% were needed at 34, 38, and 42 °C, respectively. Further reductions of cells were observed after storage for 7 days at 4 °C. But storage at 25 °C increased the number of viable cells to 8-log cfu/mL after 7 days. This study showed the potential of the pilot scale SCCO2 system with a gas–liquid porous metal contactor for microbial inactivation in liquid food.  相似文献   

8.
The present work aims at obtaining a suitable and selective catalyst for catalytic dehydrogenation reactions through designing pore structures of silica-containing alumina nanocomposites by optimizing silica content in the structure. In this trend, series of silica-containing alumina nanocomposites with different molar ratios Al2O3/SiO2 were prepared by the solvothermal method. According to surface characterization of silica-containing alumina nanocomposites, the sample with the highest molar ratio of Al2O3/SiO2 (2.06) showed mesoporous structure with selective pore sizes of 3.7 and 4.6 nm. In addition, it had a high surface area value of 308 m2/g. Furthermore, SEM and TEM images of the same sample showed ultra fine sized particles in the nano size (7–17 nm). Dehydrogenation catalysts, as developed structures, were then achieved by loading 0.6 wt.% platinum metal over the prepared nanocomposites. Performances of the prepared nanocatalysts were investigated via the dehydrogenation of a model compound namely; cyclohexane. Experimental results showed that the Pt catalyst supported on the silica-containing alumina nanocomposites with the highest molar ratio of Al2O3/SiO2, is an efficient and selective catalyst toward the dehydrogenation reaction. This was revealed in terms of 100% selectivity of this catalyst toward the conversion of cyclohexane at all ranges of temperatures with the conversion reaction being temperature dependent. Practically, the total conversion of cyclohexane increased with increasing reaction temperature and reached 100% at 450 °C while the prepared catalyst demonstrated absolute selectivity.  相似文献   

9.
M-doped TiO2 nanoparticles (M = Cu, Zn) were prepared by the sol–gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR and UV–vis spectroscopy techniques were used to characterize the samples. Photocatalytic activities of samples for methyl orange (MO) degradation and the chemical oxygen demand (COD) were investigated. XRD results confirmed the formation of the anatase phase for the TiO2 nanoparticles, with crystallite sizes in the range of 9–21 nm. The small crystallite size and doping ions (Cu and Zn) inhibited any phase transformation and promoted the growth of the TiO2 anatase phase. The optical study showed that doping ions lead to an increase in the absorption edge wavelength, and a decrease in the band gap energy of TiO2 nanoparticles. The doped TiO2 nanoparticles in general showed higher photocatalytic activities than the pure ones. The Cu doped TiO2 nanoparticles showed the best photocatalytic activity based on the measured COD values.  相似文献   

10.
A series of dealuminated Y-zeolites impregnated by 0.5 wt% Pt catalysts promoted by different amounts of Ni, Pd or Cr (0.3 and 0.6 wt%) were prepared and characterized as hydrocracking catalysts. The physicochemical and structural characterization of the solid catalysts were investigated and reported through N2 physisorption, XRD, TGA-DSC, FT-IR and TEM techniques. Solid catalysts surface acidities were investigated through FT-IR spectroscopy aided by pyridine adsorption. The solid catalytic activities were evaluated through hydroconversion of n-hexane and n-heptane employing micro-catalytic pulse technique directly connected to a gas chromatograph analyzer. The thermal stability of the solids was also investigated up to 800 °C. Crystallinity studies using the XRD technique of all modified samples proved analogous to the parent Y-zeolite, exhibiting nearly an amorphous and microcrystalline character of the second metal oxides. Disclosure of bimetallic catalysts crystalline characterization, through XRD, was not viable. The nitrogen adsorption–desorption isotherms for all samples concluded type I adsorption isotherms, without any hysteresis loop, indicating that the entire pore system is composed of micropores. TEM micrographs of the solid catalysts demonstrate well-dispersed Pt, Ni and Cr nanoparticles having sizes of 2–4 nm and 7–8 nm, respectively. The catalytic activity results indicate that the bimetallic (0.5Pt–0.3Cr)/D18H–Y catalyst is the most active towards n-hexane and n-heptane isomerization while (0.5Pt–0.6Ni)/D18H–Y catalyst can be designed as most suitable as a cracking catalyst.  相似文献   

11.
Accelerated deactivation tests of the pre-sulfided Mo–W/SiO2–Al2O3 commercial catalyst were performed using heavy vacuum petroleum feedstock. High reaction temperature employed in the accelerated catalyst aging resulted in large amounts of carbonaceous deposition with high aromaticity, which was found to be the principal deactivation cause. The effect of catalyst deactivation on hydrocracking of vacuum residue was studied. Experiments were carried out in a batch reactor at 60 bar, feed to catalyst ratio 10:1 and temperature 425 °C. The duration time for a cycle-run was 4 h. On increasing the interval duration times from 4 to 20 h (i.e. five cycles), the quality of the hydrocracked products was decreased. In each cycle-run, a fresh feedstock was used with the same sulfide catalyst. The quality of distillate products, such as hydrodesulfurization (HDS) was decreased from 61.50% to 39.52%, while asphaltene contents of the total liquid product were increased from 2.7% to 5.2% and their boiling ranges were increased during these duration times due to the successive catalyst deactivation during the 5 cycle-runs, caused by successive adsorption of coke formation.  相似文献   

12.
Minimally processed baby spinach contaminated with Escherichia coli O157:H7 has been associated with multiple outbreaks of foodborne illnesses recently. Chlorinated water is widely used to wash vegetables commercially, but this washing procedure has limited efficacy and can lead to the formation of carcinogenic substances. This study was conducted to determine the effects of organic acids and hydrogen peroxide alone and in binary combinations with or without mild heat (40 and 50 °C) on the inactivation of Escherichia coli O157:H7 on baby spinach. Baby spinach leaves were dip-inoculated with E. coli O157:H7 to a level of 6 log CFU/g and stored at 4 °C for 24 h before treatment. Individual washing solutions (1% and 2% lactic acid [LA], citric acid [CA], malic acid [MA], tartaric acid [TA], acetic acid [AA], hydrogen peroxide [H2O2] as well as binary combinations of LA, CA, MA and H2O2 at final concentrations of 1% were used to decontaminate spinach leaves at 22, 40 or 50 °C for 2–5 min to test their efficacy in reducing E. coli O157:H7. Chlorinated water (200 ppm free chlorine) decreased the population of E. coli O157:H7 on baby spinach by only 1.2–1.6 log CFU/g, which was not significantly different from DI water washing. Washing with 1% LA at 40 °C for 5 min was the most effective treatment achieving a 2.7 log reduction of E. coli O157:H7 which is significantly higher than chlorine washing. Washing with LA + CA or LA + HP at 40 °C for 5 min was equally effective against E. coli O157:H7, resulting in a 2.7 log reduction of E. coli O157:H7. The application of mild heat significantly enhanced the efficacy of washing solutions on the inactivation of E. coli O157:H7. There was, however, no significant difference between treatments at 40 °C for 5 min and 50 °C for 2 min. The results suggested that the use of organic acids in combination with mild heat can be a potential intervention to control E. coli O157:H7 on spinach.  相似文献   

13.
Mesoporous aluminosilicate AlSBA-15 was synthesized and adopted as a support for NiO with 3, 6 and 9 wt.% loadings. Characterization of various samples was performed through XRD, FTIR, DSC-TGA, TPR, SEM and TEM techniques. Textural and morphological characteristics were examined using N2 adsorption–desorption isotherms. Catalytic activities were measured in cumene cracking for parent AlSBA-15 and in n-hexane and toluene cracking and cyclohexane dehydrogenation for supported NiO samples. Uniformity of the ordered 2D-hexagonal structure of AlSBA-15 was evident even after loading with NiO. NiO and NiOOH phases could be detected particularly in the sample containing 9 wt.% NiO. TPR profile of solid loaded with 3 wt.% NiO sample showed negative peaks at 400 and 600 °C, related to hydrogen spillover on reduced sample. Selectivity towards n-hexane and toluene cracking increased with both temperature and metal oxide loading, achieving 100% at 350 °C. In cyclohexane dehydrogenation, the sample loaded with 3 wt.% NiO was the most active and selective one towards benzene formation.  相似文献   

14.
《Food Control》2007,18(5):441-447
Pasteurized milk was inoculated with two strains of Staphylococcus aureus (CECT4013 or ATCC13565) and used to elaborate soft-curd cheeses with approximately 7.5-log CFU/g of S. aureus. Cheeses were submitted to 10 min high hydrostatic pressure (HHP) treatments of 300, 400 or 500 MPa at 5 °C or 20 °C. Staphylococcus enterotoxin (SE) was evaluated in cheeses containing ATCC13565. Counts of S. aureus were measured after HHP treatment (day 1) and after 2, 15 and 30 days ripening at 8 °C. Inactivation increased with pressure and storage time, but was similar for both treatment temperatures. Maximum S. aureus reductions were achieved after 30 days ripening for samples treated at 500 MPa and 5 °C: 6.0 ± 0.1 and 4.7 ± 0.5-log CFU/g for CECT4013 and ATCC13565, respectively. However, SE was detected in all cheese samples containing ATCC13565 before and after HHP and after 30 days ripening.  相似文献   

15.
《Food Control》2007,18(4):312-320
The study was conducted to assess the impact of the changes in the milk collection system in Trinidad (from twice daily collection to once, introduction of chilling facilities to the collection centres and transportation of milk to the processing plant in insulated truck instead of in metal churns at ambient temperature) on the microbial load and antimicrobial residue quality of the milk as well as the temperature and pH of milk, using standard methods. The presence of antimicrobial residues was detected using the Delvo test kit. Of a total of 266 milk samples from churns, the mean ± sd temperature and log10 ± sd TAPC per ml was 20.36 ± 7.91 °C and 6.3 ± 1.09 respectively. For 20 milk samples from the chillers, the mean temperature and log10 ± sd TAPC per ml was 15.10 ± 2.73 °C and 7.04 ± 0.33 respectively compared with corresponding values for 36 samples collected from the truck, 11.64 ± 4.22 °C and 7.11 ± 0.62 respectively (P < 0.05; X2). The mean TAPC, staphylococcal and E. coli counts per ml of milk from churns were significantly (P < 0.05; X2) higher for milk at low temperature (0–20 °C) compared with milk at high temperature (>30 °C). Eight (4.2%) of 192 milk samples tested contained antimicrobial residues. Of 168 S. aureus isolates tested, 24 (14.3%) were enterotoxigenic while 53 (45.3%) of 117 isolates tested exhibited resistance to various antimicrobial agents while of 386 isolates of E. coli tested, 3 (0.8%) were O157 strain and 129 (64.5%) of 200 isolates exhibited resistance to antimicrobial agents. It was concluded that despite the changes, the microbial load of milk was still high suggesting poor sanitary practices at the farm level. The detection of antimicrobial residues agents coupled with toxigenic S. aureus and E. coli isolates could pose health hazards to consumers.  相似文献   

16.
As conventional energy sources deplete, the need for developing alternative energy resources which are environment friendly becomes more imperative. Vegetable oils are attracting increased interest in this purpose. The methanolysis of vegetable oil to produce a fatty acid methyl ester (FAME, i.e., biodiesel fuel) was catalyzed by commercial ionic liquid and its chloride modification. The imidazolium chloride ionic liquid was frequently chosen for the synthesis of biodiesel. The dual-functionalized’ ionic liquid is prepared by a direct combination reaction between imidazolium cation and various metal chlorides such as CoCl2, CuCl2, NiCl2, FeCl3 and AlCl3. Imidazolium tetrachloroferrate was proved to be a selective catalyst for the methanolysis reaction at a yield of 97% when used at 1:10, catalyst: oil ratio for 8 h at 55 °C. Operational simplicity, reusability of the used catalyst for 8 times at least, high yields and no saponification are the key features of this methodology. The dynamic viscosity and density of the upgraded vegetable oil decreased from 32.1 cP and 0.9227 g/cm3 to 10.2 cP and 0.9044 g/cm3 respectively, compared to those of the base vegetable oil. The objective of this study was the synthesis and characterization of biodiesel using commercial ionic liquid and its chloride modification. The ionic liquid catalysts were characterized using FTIR, Raman spectroscopy, DSC, TG and UV.  相似文献   

17.
Alumina-supported metal nanocatalysts were prepared via the microwave method, by loading nano Ni particles (at 1, 3 and 5 wt%) or nano Pt particles (at 0.3, 0.6 and 0.9 wt%). Structural and adsorption features of the nano catalysts were revealed through XRD, DSC-DTA, TEM, H2-chemisorption and N2-physisorption. N2-adsorption–desorption isotherms of type IV were related typically to mesoporous materials with H2 class of hysteresis loops characterizing ink bottle type of pores. The well dispersed nano-sized metal particles were evidenced in the studied catalytic systems, exhibiting marked thermal stability up to 800 °C. The catalytic performances of different catalyst samples were assessed during cyclohexane, normal hexane and ethanol conversions, using the micro-catalytic pulse technique at different operating conditions. The 5% Ni–γ–Al2O3 sample was found to be the most active in dehydration of ethanol to produce ethylene, as well as in n-hexane cracking. However, the 1% Ni–Al2O3 sample showed the highest dehydrogenation activity for selective production of benzene from cyclohexane. On the other hand, the 0.9% Pt–γ–Al2O3 sample exhibited the highest activity in the dehydration of ethanol and in the dehydrogenation of cyclohexane. The 0.3% Pt–γ–Al2O3 sample was the most active in the dehydrocyclization of normal hexane, as compared to the other catalyst samples under study.  相似文献   

18.
Catalytic dehydration of methanol to dimethyl ether (DME) was investigated using physically and chemically modified H-Mordenite and H-Beta zeolites as catalysts. Physical modification was carried out using ultrasonic wave’s energy, while chemical modification was performed through impregnation in aluminum nitrate followed by calcination. The produced solid catalysts were evaluated as selective catalysts for the dehydration of methanol to dimethyl ether at 100–250 °C performed at three different contact times. Chemical and structural characterizations of the solid catalysts were identified using XRD, FT-IR, TEM, SEM and NH3-TPD. Ultrasonication physical mixing of solids proved as useful tool of preparation, producing fine reordered crystals of nanocomposite zeolites with novel morphology. The newly ordered crystals were distinguished by their frame work structure, acidic properties, crystal and particle sizes, unit cell volume, pore opening, and favorable catalytic activity of 100% selectivity to DME at 200 °C for all contact times studied. The effects of Al2O3 on the dispersion and interaction within the nano-zeolite crystals and hence on the catalytic dehydration of methanol were verified as the major influence toward utmost selectivity.  相似文献   

19.
In the present study, multi-walled carbon nanotubes (MWCNT) were prepared in good quality and quantity, MWCNT were produced using the catalytic chemical vapor deposition (CCVD) technique and the carbon source was acetylene. Different catalysts were synthesized based on iron and a mixture of iron and cobalt metal supported on SiO2, Al2O3 or MgO. The effect of parameters such as iron concentration, support type, bimetallic catalyst and the method of catalyst preparation has been investigated in the production of MWCNT. The quality of as-made nanotubes was investigated by the high-resolution transmission electron microscopy (HRTEM) and thermogravimetric analysis (TGA). The best yield of MWCNT was 30 times of the amount of the used catalyst. The high yield of MWCNT was gained by 40 wt.% Fe on alumina support which was prepared by the sol–gel method. TEM analysis was done for the carbon deposit, which revealed that the walls of the MWCNT were graphitized, with regular inner channel and uniform diameter. It reflected a reasonable degree of purity. The TGA showed that MWCNT was decomposed at 635 °C by a small rate indicating a high thermal stability and well crystalline formation of the produced MWCNT.  相似文献   

20.
《Food Control》2005,16(1):31-35
A study was made on the microbial levels of buffalo sausage during preparation and storage at 4 ± 1 °C. Microbial counts in raw minced meat were, total plate count (TPC) (log cfu/g) 5.41 ± 0.25; coliforms (MPN/g) 23.2; Staphylococcus aureus (log cfu/g) 1.57 ± 0.11; yeasts and molds (log cfu/g) 2.29 ± 0.07 and lactic acid bacteria (LAB) (log cfu/g) 0.60 ± 0.20. Sausage emulsion showed similar trend in microbial counts with minimal microbial contamination during the preparation of emulsion. Cooked buffalo sausage gave the following microbial counts: TPC (log cfu/g) 3.75 ± 0.31; coliforms (MPN/g) 0.2; LAB (log cfu/g) 0.07 ± 0.01; yeast and molds (log cfu/g) 0.72 ± 0.07. S. aureus, Clostridium perfringens and Bacillus cereus were not detected in cooked sausages. These results indicate that steam cooking for 45 min followed in the study was effective in reducing the microbial counts substantially. The investigation revealed that shelf life of cooked buffalo sausage was 31 days in either vacuum or CO2 at 4 ± 1 °C. The results indicated that spoilage of vacuum packed cooked buffalo sausage was likely due to LAB while microflora other than LAB may be responsible for spoilage of CO2 packed cooked buffalo sausage. The study suggests that measures such as low initial microbial counts, hygienic precautions during preparation of sausage, steam cooking for 45 min, vacuum or CO2 packing and storage at 4 ± 1 °C would control the microbial growth and provide wholesomeness and safety to the buffalo sausage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号