首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 598 毫秒
1.
《分离科学与技术》2012,47(8):1313-1320
The removal characteristics of Cd(II), Cu(II), Pb(II), and Zn(II) from model aqueous solutions by 5 natural Mongolian zeolites were investigated. The adsorption of metals on zeolites reached a plateau value within 6 h. The adsorption kinetic data were fitted with adsorption kinetic models. The equilibrium adsorption capacity of the zeolites was measured and fitted using Langmuir and Freundlich isotherm models. The order of adsorption capacity of zeolite was Pb(II) > Zn(II) > Cu(II) > Cd(II). The maximum adsorption capacity of natural zeolite depends on its cation exchange capacity and pH. The leaching properties of metals were simulated using four leaching solutions. The results show that natural zeolite can be used as an adsorbent for metal ions from aqueous solutions or as a stabilizer for metal-contaminated soils.  相似文献   

2.
《分离科学与技术》2012,47(2):214-220
In this research amino functional mesoporous MCM-41 and MCM-48 materials were prepared in an attempt to develop efficient adsorbents for removal of heavy metals from aqueous solutions. The adsorbents were characterized by XRD, FTIR, and TG-DTG techniques. The synthesized adsorbents were used for the removal of Cu(II), Co(II), Cd(II), and Pb(II) from aqueous solutions for the first time, and the influence of some effective parameters including concentration, initial pH, contact time, and temperature on the sorption process was studied and optimized. Significant adsorption capacities were obtained at low concentrations. The kinetic studies showed that the adsorption process was fast and more than 90% of equilibrium capacity was achieved within 60 min. Experimental kinetic data was well fitted with the pseudo-second-order kinetic model. Thermodynamic parameters computed from the experimental data showed that the adsorption was endothermic and spontaneous.  相似文献   

3.
《分离科学与技术》2012,47(8):1279-1288
A novel low-cost polyvinyl alcohol modified chitosan-mycelium (MCMP) biosorbent was prepared and used for Cu(II) removal from aqueous solutions. SEM, mercury intrusion, and FTIR were employed for characterization. The optimum pH for Cu(II) adsorption was 4–5. Kinetic study showed that Cu(II) adsorption on MCMP followed the pseudo second-order kinetic model. The equilibrium data at different temperatures were well fitted by the Langmuir isotherm. The thermodynamic study proved the spontaneous and endothermic nature of the chemisorption process. MCMP could be reused for 10 adsorption-desorption-regeneration cycles without significantly reducing its adsorption capacity. MCMP adsorption is an inexpensive and promising method for Cu(II) removal from dilute solutions.  相似文献   

4.
The removal of Ni(II) from aqueous solutions using biomass prepared from Ceiba pentandra hulls powder modified with citric acid treatment (CAMCPH) has been studied by batch method. The biosorbent was characterised before and after citric acid modification using SEM, FT‐IR and XRD. Experimental parameters that influence the biosorption of Ni(II), such as pH, biosorbent dose, contact time and initial concentration of metal ion have been investigated. The adsorption of Ni(II) increased with increase in contact time and reached equilibrium within 50 min. The maximum removal of Ni(II) was observed at pH 5.0. The kinetic data were analysed using three adsorption kinetic models: the pseudo‐first, second‐order kinetics and intra‐particle diffusion. The results showed that the pseudo‐second‐order model fits the experimental data very well. The equilibrium data were analysed using Langmuir, Freundlich and Dubinin–Radushkevich isotherm models. Langmuir model provided the best correlation for the adsorption of Ni(II) by CAMCPH and the monolayer biosorption capacity for Ni(II) removal was 34.34 mg/g. Desorption experiments were carried out using HCl solution and the recovery of the metal ion from CAMCPH was found 98%. Desorption experiments showed the feasibility of regeneration of the biosorbent for further use after treating with dilute HCl. © 2011 Canadian Society for Chemical Engineering  相似文献   

5.
《分离科学与技术》2012,47(8):1235-1243
Removal of Cu(II) and Ni(II) from aqueous solutions by a novel xanthated carboxymethyl chitosan (XCC) was investigated. XCC obtained was characterized by FTIR, SEM, EDX, and XRD. The adsorption ability of chitosan and XCC toward Cu(II) and Ni(II) was compared. The effect of pH (2.0–7.0), contact time (5–60 min), and adsorption isotherms on adsorption were also investigated. It was observed that the modified chitosan XCC showed a remarkable increase in Cu(II) and Ni(II) adsorption as compared to chitosan and displayed a quick adsorption performance. Further, The Langmuir isotherm was found to provide the best correlation of the experimental data and the adsorption capacity obtained from the Langmuir model was 174.2 mg/g and 128.4 mg/g for Cu(II) and Ni(II), respectively. FTIR and UV spectra suggested that the amino groups, carboxyl groups, and xanthate groups of XCC participated in the adsorption.  相似文献   

6.
《分离科学与技术》2012,47(5):729-741
Chelating PS-EDTA resins modified by metal (Fe, Al, and Zr) oxides were used as adsorbents to remove Hg(II) from aqueous solutions. The modified resins were characterized by BET, FTIR, and XPS. The amino, carboxylate, and the metal oxides on resins exhibited a synergistic effect for Hg(II) removal. It was observed that the modification of PS-EDTA resin not only increased the adsorption of Hg(II) but also accelerated the adsorption rate of Hg(II). The equilibrium data of Hg(II) were best described by the Freundlich isotherm, and the kinetics were found to follow the pseudo-second-order kinetic model. Also, thermodynamic parameters showed that Hg(II) adsorption was endothermic and spontaneous in nature. The increasing the concentration (0.1–2.0 g/L) of NaNO3 in Hg(II) solution did not affect the adsorption of Hg(II). Moreover, the competitive adsorption indicated that the modified resins had higher selectivity towards Hg(II) over Cd(II), Pb(II), Zn(II), or Cu(II) in a binary system. All of the above results indicated that the modified resin was an efficient and reusable adsorbent for Hg(II) removal due to its simple preparation, high adsorption capacity, fast adsorption rate, ionic strength independence, high selectivity, and good reusability. These properties are of potential application in the fixed-bed continuous-flow column for Hg(II) removal from wastewaters.  相似文献   

7.
8.
Adsorption of precious metals in acidic aqueous solutions using thiourea modified magnetic magnetite nanoparticle (MNP-Tu) was examined. The MNP-Tu was synthesized, characterized and examined as a reusable adsorbent for the recovery of precious metals. The adsorption kinetics were well fitted with pseudo second-order equation while the adsorption isotherms were fitted with both Langmuir and Freundlich equations. The maximum adsorption capacity of precious metals for MNP-Tu determined by Langmuir model was 43.34, 118.46 and 111.58 mg/g for Pt(IV), Au(III) and Pd(II), respectively at pH 2 and 25 °C. MNP-Tu has high adsorption selectivity towards precious metals even in the presence of competing ions (Cu(II)) at high concentrations. In addition, the MNP-Tu can be regenerated using an aqueous solution containing 0.7 M thiourea and 2% HCl where precious metals can be recovered in a concentrated form. It was found that the MNP-Tu undergoing seven consecutive adsorption-desorption cycles still retained the original adsorption capacity of precious metals. A reductive adsorption resulting in the formation of elemental gold and palladium at the surface of MNP-Tu was observed.  相似文献   

9.
《分离科学与技术》2012,47(14):2275-2282
The present study explores the ability of surfactant modified bamboo sawdust in removing zinc (II) ions from aqueous solutions. The modified bamboo sawdust is characterized by surface area analysis, Scanning Electron Microscope, and Fourier Transform Infrared and X-ray fluorescence analysis. Adsorption isotherm and kinetic models were used to study the adsorption characteristics of zinc (II) ions onto modified bamboo sawdust. The equilibrium adsorption isotherm data were fitted into the Langmuir and Freundlich adsorption isotherms. It was found that modified bamboo sawdust yielded maximum adsorption capacity of 111.12 mg/g at 50°C for zinc (II) ions. The kinetic data obtained at different initial concentrations were analyzed using first-order-reversible reaction, pseudo-first-order, and pseudo-second-order models. The results provide strong evidence to support the hypothesis of adsorption mechanism.  相似文献   

10.
Two chemically modified starch derivatives, crosslinked amino starch (CAS) and dithiocarbamates modified starch (DTCS), were prepared and used for the removal of Cu(II) from aqueous solutions. CAS was found to be effective for the adsorption of Cu(II), which tended to form a stable amine complex. Adsorption of Cu(II) onto DTCS was higher than that onto CAS. Experiments showed that the adsorption processes of Cu(II) on both CAS and DTCS were endothermic, and followed Freundlich isothermal adsorption. For both adsorbents, dynamic modeling of their adsorption showed that the first‐order reversible kinetic model described the adsorption process. The adsorption rate constants of CAS and DTCS were 1.578 and 10.32 h?1, respectively. From the results of the thermodynamic analysis, free energy ΔG, enthalpy ΔH, and entropy ΔS of the adsorption process were calculated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3881–3885, 2004  相似文献   

11.
Tuffite has been studied for Cu(II) adsorption from aqueous and ammoniacal solutions. Tuffite was characterized by mercury porosimetry, Brunnauer–Emmet–Teller (BET), scanning electron microscopy–energy X-ray dispersive spectroscopy (SEM-EDS), Fourier transform infrared spectra (FTIR), X-ray powder diffraction (XRD), inductively coupled plasma-atomic emission spectrometry (ICP-OES) and petrographic microscopy. The equilibrium time was 50 min. The second-order model is the best model to describe the process. It was determined that the intraparticle diffusion was not the only limited step. Process variables were studied to improve the adsorption process. The material washed contributes to increase the Cu(II) adsorption from 213.05 to 276 mg/g. The flow countercurrent system requires at least 6 g of tuffite to achieve 90% of removal.  相似文献   

12.
The effect of complexing agents on adsorption and desorption of Cu(II) from aqueous solutions using chitosan was investigated. Three complexing agents were used including EDTA (ethylenediaminetetraacetic acid), citric acid, and tartaric acid. It was shown that the isotherm data could be fitted by the Langmuir equation under a limited concentration range. Furthermore, the adsorption processes were analyzed by an intraparticle diffusion model and the rate parameters of intraparticle diffusion for Cu(II) adsorption could be correlated with the initial Cu(II) concentrations. Finally, the desorption of Cu(II) and its complexes from the loaded chitosan was tested using complexing agent solutions. Under comparable conditions, tartaric acid solution gave the best desorption efficiency. © 1999 Society of Chemical Industry  相似文献   

13.
Natural attapulgite (ATP) was modified with an amino-terminated organosilicon (3-aminopropyltriethoxysilane, APTES) in order to develop an effective adsorbent for aqueous Hg(II) removal. The surface area of the modified ATP (M-ATP) was calculated using the Brunauer–Emmett–Teller method. The adsorbent was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FT-IR) and electrophoretic mobility. Due to complexation between mercury and the amine functional groups on the M-ATP, the adsorption capacities significantly increased from 5 mg/g (raw ATP) to 90 mg/g (M-ATP). Batch adsorption results showed that the adsorption process was rapid and over 90% of aqueous Hg(II) was removed within 1 h. The efficiency of the adsorbent was found to remain almost constant over a wide pH range (3–11). Adsorption of Hg(II) by M-ATP was proposed as the complexation between mercury and the amine functional groups on the M-ATP surface. Ionic strength and co-existing ions had a slight influence on the adsorption capacity. Hg(II) adsorbed onto M-ATP could be effectively desorbed in 1:1 (m/m) chlorohydric acid/thiourea solution. Our results suggest that the M-ATP may be used as renewable adsorbents for fast removal of Hg(II) from aqueous solutions.  相似文献   

14.
The adsorption of Cu (II) from aqueous solutions using coconut shell modified powder was investigated in batch experiments. The surface charge of the adsorbent was determined. The points of zero charge (PZC) of the adsorbents (pHPZC) were 4.5, 2.0, and 2.0 to raw coconut (RC), raw coconut alkalized (RCA), and coconut shell modified with tannic acid (TCA) adsorbent, respectively. Batch experiments were performed under kinetic and equilibrium conditions. The kinetic data were analyzed using a pseudo second‐order, and Elovich equation. Adsorption equilibrium data were investigated using the Langmiur, Freundlich, Temkin, and Dubinin–Raduschevich (D–R) isotherm models. It has been found that chemically modified coconut shell (TAC) affected performance when compared with unmodified coconut shell (RC). Kinetic studies showed that the adsorption followed a pseudo‐second‐order rate model. Biosorption kinetics of Cu(II) on the adsorbent TCA was rapid such that almost 90% of Cu(II) were adsorbed within 80 min. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40744.  相似文献   

15.
Composite nanofibers containing polyacrylonitrile and natural clay particles were fabricated and investigated for the removal of Pb(II), Cu(II) and Zn(II) from aqueous solutions. The adsorption behavior of Pb(II), Cu(II) and Zn(II) can be well described by the Langmuir adsorption model and high loading capacities at pH 7 were obtained. The kinetics of the adsorption process showed that equilibrium was attained after 60 min and the experimental data followed a pseudo-first-order model. The nanocomposites were also tested for photocatalytic degradation of Monocrotophos pesticides in which high degradation efficiency (>90%) was obtained in less than 60 min.  相似文献   

16.
A novel Hg(II) ion‐imprinted resin based on thiourea‐modified melamine was manufactured for selective elimination of Hg2+ from aqueous solutions. The polymerizable thiourea–melamine ligand together with its Hg(II) complex were extensively investigated using elemental analysis, Fourier transform infrared (FTIR) and 1H NMR spectroscopies. The Hg(II) complex was used in a condensation polymerization in the presence of formaldehyde crosslinker and then the Hg(II) ions were leached out from the crosslinked polymeric network to finally leave the ion‐imprinted Hg‐PMTF resin. Both ion‐imprinted Hg‐PMTF and non‐imprinted resins were examined utilizing scanning electron microscopy and FTIR spectroscopy. The potential of the prepared resin for selective separation of Hg(II) ions from aqueous solutions was then evaluated by performing a series of batch experiments. Hg‐PMTF displayed an obvious rapid removal of Hg(II) ions with a pseudo‐second‐order kinetic pattern. In addition, the Langmuir adsorption isotherm model exhibited the best fit with the experimental data with comparatively high maximum adsorption capacity (360.5 mg g?1). © 2015 Society of Chemical Industry  相似文献   

17.
BACKGROUND: The adsorption of Cu(II) on β‐cyclodextrin (β‐CD) modified multiwall carbon nanotubes/iron oxides (denoted as MWCNT/IO/CD) as a function of contact time, pH, adsorbent content, temperature, fulvic acid (FA) and initial Cu(II) concentrations was investigated using a batch technique under ambient conditions. RESULTS: The adsorption of Cu(II) was strongly dependent on pH, adsorbent content, temperature and FA. A positive effect of FA on Cu(II) adsorption was found at pH < 6.5, whereas a negative effect was observed at pH > 6.5. Different effects of FA/Cu(II) concentrations on Cu(II) and FA adsorption were observed, indicating enhanced Cu(II) adsorption on FA bound MWCNT/IO/CD, whereas FA adsorption was decreased in the presence of Cu(II) ions. The adsorption isotherms were well fitted by the linear isotherm model. The adsorption thermodynamic parameters calculated from temperature dependent adsorption isotherms suggested that the adsorption of Cu(II) on MWCNT/IO/CD was an endothermic and spontaneous process. CONCLUSIONS: MWCNT/IO/CD is a promising magnetic material for the preconcentration and separation of Cu(II) ions from aqueous solutions in environmental pollution cleanup. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
Sodium alginate was protonated using HCl in ethanol: H2O mixture (30:70). The modified sodium alginate (MSA) was characterized by determination of carboxyl content and solubility percent. The modified sample acquires of 450 meq-COOH/100 g sample and exhibits the complete insolubility in water. The MSA was utilized as adsorbent material to remove Cd(II) ions from aqueous solutions. Factors affecting adsorption process, such as agitation time and adsorbent concentration and pH of the adsorbate, were examined. The adsorption data show that the maximum adsorption capacity, Qmax, of Cd(II) onto MSA is 769.23 mg/g. The adsorption data also showed that the adsorption of Cd(II) onto MSA obeys Langmuir and Freundlich isotherms.  相似文献   

19.
Summary Poly(N-hydroxymethylacrylamide), PHMA, hydrogels were prepared by using N-hydroxymethylacrylamide, HMA, monomer and polyethyleneglycol(400)diacrylate as a crosslinking agent in aqueous medium and then amine groups were incorporated onto PHMA hydrogels by amination reaction with different diamines. The obtained hydrogels were characterized by determination of amine value, hydroxymethyl group content and FTIR spectra. The amine value of hydrogels changed from 2.23 to 4.64 mmol/g by depending on the amine compounds used in amination reaction. Their swelling degree increased at acidic pH values and they showed pH dependent swelling behaviour. They were used as sorbent for removal of indigo carmine and Cu(II) ion, as a model dye molecule and metal ion, respectively, from aqueous solutions. The adsorption properties of the hydrogels were investigated by depending on pH, time and initial indigo carmine or Cu(II) ion concentration. It was seen that the amine group incorporated hydrogels have quite high adsorption rate and adsorption capacity, and their adsorption capacities changed with pH of the solution. Langmuir isotherm model was the best fit for adsorption of both indigo carmine and Cu (II) ion.  相似文献   

20.
《分离科学与技术》2012,47(4):937-953
Abstract

The Mg-silicate microballoons containing CYANEX923 were prepared by W/O/W emulsion. The diameter of obtained micro-sphere particles was ~10 µm and shell thickness was 2 µm. The adsorption of Co(II) and Ni(II) from aqueous solutions using prepared micro-sphere particles was investigated. Experiments were carried out as a function of solute concentration and temperature (25–60°C). Several kinetic models were used to test the experimental rate data and to examine the controlling mechanism of the adsorption process. Equilibrium adsorption data were analyzed using Langmuir isotherm model. The results indicated that prepared micro-sphere particles can be used as an efficient adsorbent for the removal of Ni(II) and Co(II) from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号