首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myxomatous mitral valve prolapse (MMVP) and fibroelastic deficiency (FED) are two common variants of degenerative mitral valve disease (DMVD), which is a leading cause of mitral regurgitation worldwide. While pathohistological studies have revealed differences in extracellular matrix content in MMVP and FED, the molecular mechanisms underlying these two disease entities remain to be elucidated. By using surgically removed valvular specimens from MMVP and FED patients that were categorized on the basis of echocardiographic, clinical and operative findings, a cluster of microRNAs that expressed differentially were identified. The expressions of has-miR-500, -3174, -17, -1193, -646, -1273e, -4298, -203, -505, and -939 showed significant differences between MMVP and FED after applying Bonferroni correction (p < 0.002174). The possible involvement of microRNAs in the pathogenesis of DMVD were further suggested by the presences of in silico predicted target sites on a number of genes reported to be involved in extracellular matrix homeostasis and marker genes for cellular composition of mitral valves, including decorin (DCN), aggrecan (ACAN), fibromodulin (FMOD), α actin 2 (ACTA2), extracellular matrix protein 2 (ECM2), desmin (DES), endothelial cell specific molecule 1 (ESM1), and platelet/ endothelial cell adhesion molecule 1 (PECAM1), as well as inverse correlations of selected microRNA and mRNA expression in MMVP and FED groups. Our results provide evidence that distinct molecular mechanisms underlie MMVP and FED. Moreover, the microRNAs identified may be targets for the future development of diagnostic biomarkers and therapeutics.  相似文献   

2.
Mitral valve disease (MVD) is a frequent cause of heart failure and death worldwide, but its etiopathogenesis is not fully understood. Interleukin (IL)-33 regulates inflammation and thrombosis in the vascular endothelium and may play a role in the atherosclerotic process, but its role in mitral valve has not been investigated. We aim to explore IL-33 as a possible inductor of myxomatous degeneration in human mitral valves. We enrolled 103 patients suffering from severe mitral regurgitation due to myxomatous degeneration undergoing mitral valve replacement. Immunohistochemistry of the resected leaflets showed IL-33 and ST2 expression in both valve interstitial cells (VICs) and valve endothelial cells (VECs). Positive correlations were found between the levels of IL-33 and molecules implicated in the development of myxomatous MVD, such as proteoglycans, extracellular matrix remodeling enzymes (matrix metalloproteinases and their tissue inhibitors), inflammatory and fibrotic markers. Stimulation of single cell cultures of VICs and VECs with recombinant human IL-33 induced the expression of activated VIC markers, endothelial–mesenchymal transition of VECs, proteoglycan synthesis, inflammatory molecules and extracellular matrix turnover. Our findings suggest that the IL-33/ST2 system may be involved in the development of myxomatous MVD by enhancing extracellular matrix remodeling.  相似文献   

3.
Mitral valve prolapse (MVP) associated with severe mitral regurgitation is a debilitating disease with no pharmacological therapies available. MicroRNAs (miRNA) represent an emerging class of circulating biomarkers that have never been evaluated in MVP human plasma. Our aim was to identify a possible miRNA signature that is able to discriminate MVP patients from healthy subjects (CTRL) and to shed light on the putative altered molecular pathways in MVP. We evaluated a plasma miRNA profile using Human MicroRNA Card A followed by real-time PCR validations. In addition, to assess the discriminative power of selected miRNAs, we implemented a machine learning analysis. MiRNA profiling and validations revealed that miR-140-3p, 150-5p, 210-3p, 451a, and 487a-3p were significantly upregulated in MVP, while miR-223-3p, 323a-3p, 340-5p, and 361-5p were significantly downregulated in MVP compared to CTRL (p ≤ 0.01). Functional analysis identified several biological processes possible linked to MVP. In addition, machine learning analysis correctly classified MVP patients from CTRL with high accuracy (0.93) and an area under the receiving operator characteristic curve (AUC) of 0.97. To the best of our knowledge, this is the first study performed on human plasma, showing a strong association between miRNAs and MVP. Thus, a circulating molecular signature could be used as a first-line, fast, and cheap screening tool for MVP identification.  相似文献   

4.
Angiotensin receptor neprilysin inhibitor (ARNI) treatment reduces functional mitral regurgitation (MR) to a greater extent than angiotensin receptor blocker (ARB) treatment alone, but the mechanism is unclear. We evaluated the mechanisms of how ARNI has an effect on functional MR. After inducing functional MR by left circumflex coronary artery occlusion, male Sprague Dawley rats (n = 31) were randomly assigned to receive the ARNI LCZ696, the ARB valsartan, or corn oil only (MR control). Excised mitral leaflets and left ventricle (LV) were analyzed, and valvular endothelial cells were evaluated focusing on molecular changes. LCZ696 significantly attenuated LV dilatation after 6 weeks when compared with the control group (LV end-diastolic volume, 461.3 ± 13.8 µL versus 525.1 ± 23.6 µL; p < 0.05), while valsartan did not (471.2 ± 8.9 µL; p > 0.05 to control). Histopathological analysis of mitral leaflets showed that LCZ696 strongly reduced fibrotic thickness compared to the control group (28.2 ± 2.7 µm vs. 48.8 ± 7.5 µm; p < 0.05). Transforming growth factor-β and downstream phosphorylated extracellular-signal regulated kinase were also significantly lower in the LCZ696 group. Consequently, excessive endothelial-to-mesenchymal transition (EndoMT) was mitigated in the LCZ696 group compared to the control group and leaflet area was higher (11%) in the LCZ696 group than in the valsartan group. Finally, the MR extent was significantly lower in the LCZ696 group and functional improvement was observed. In conclusion, neprilysin inhibitor has positive effects on LV reverse remodeling and also attenuates fibrosis in MV leaflets and restores adaptive growth by directly modulating EndoMT.  相似文献   

5.
Parkinson’s disease (PD) is a neurodegenerative disorder that affects 1% of the population over the age of 60. Diabetes Mellitus (DM) is a metabolic disorder that affects approximately 25% of adults over the age of 60. Recent studies showed that DM increases the risk of developing PD. The link between DM and PD has been discussed in the literature in relation to different mechanisms including mitochondrial dysfunction, oxidative stress, and protein aggregation. In this paper, we review the common microRNA (miRNA) biomarkers of both diseases. miRNAs play an important role in cell differentiation, development, the regulation of the cell cycle, and apoptosis. They are also involved in the pathology of many diseases. miRNAs can mediate the insulin pathway and glucose absorption. miRNAs can also regulate PD-related genes. Therefore, exploring the common miRNA biomarkers of both PD and DM can shed a light on how these two diseases are correlated, and targeting miRNAs is a potential therapeutic opportunity for both diseases.  相似文献   

6.
Deoxynivalenol (DON), a frequent mycotoxin worldwide, impairs human and animal health. The response of microRNAs, small non-coding RNAs, to DON has been scarcely investigated, but holds remarkable potential for biomarker applications. Hence, we aimed to investigate DON-induced changes in the microRNA expression in porcine liver, jejunum and serum by combining targeted and untargeted analyses. Piglets received uncontaminated feed or feed containing 900 µg/kg and 2500 µg/kg DON for four weeks, followed by a wash-out period. In tissue, only slight changes in microRNA expression were detected, with ssc-miR-10b being downregulated in liver of DON-exposed piglets. In serum, several microRNAs were differentially expressed upon DON exposure, four of which were validated by qPCR (ssc-miR-16, ssc-miR-128, ssc-miR-451, ssc-miR-205). The serum microRNA response to DON increased over time and declined after removal of contaminated diets. Receiver operating curve analyses for individual microRNAs were significant, and a combination of the four microRNAs increased the predictive capacity for DON exposure. Predicted microRNA target genes showed enrichment of several pathways including PIK3-AKT, Wnt/β-catenin, and adherens junctions. This study gives, for the first time, a comprehensive view of the porcine microRNA response to DON, providing a basis for future research on microRNAs as biomarkers for mycotoxins.  相似文献   

7.
Severe bioprosthetic mitral valve calcification is a significant problem in cardiovascular surgery. Unfortunately, clinical markers did not demonstrate efficacy in prediction of severe bioprosthetic mitral valve calcification. Here, we examined whether a genomics-based approach is efficient in predicting the risk of severe bioprosthetic mitral valve calcification. A total of 124 consecutive Russian patients who underwent mitral valve replacement surgery were recruited. We investigated the associations of the inherited variation in innate immunity, lipid metabolism and calcium metabolism genes with severe bioprosthetic mitral valve calcification. Genotyping was conducted utilizing the TaqMan assay. Eight gene polymorphisms were significantly associated with severe bioprosthetic mitral valve calcification and were therefore included into stepwise logistic regression which identified male gender, the T/T genotype of the rs3775073 polymorphism within the TLR6 gene, the C/T genotype of the rs2229238 polymorphism within the IL6R gene, and the A/A genotype of the rs10455872 polymorphism within the LPA gene as independent predictors of severe bioprosthetic mitral valve calcification. The developed genomics-based model had fair predictive value with area under the receiver operating characteristic (ROC) curve of 0.73. In conclusion, our genomics-based approach is efficient for the prediction of severe bioprosthetic mitral valve calcification.  相似文献   

8.
Chronic allograft dysfunction (CAD) is a major condition affecting long-term kidney graft survival. Serum microRNA (miRNA) has been reported as a biomarker for various conditions of allograft injuries. The upregulation of miR-21 is the best-known miRNA change in graft tissue, urine and plasma. However, the correlation of plasma miR-21 with the severity of CAD remains unclear. In our study, 40 kidney transplantation recipients with late graft survival for more than 10 years were enrolled. The CAD group (n = 20) had either an eGFR between 15 to 60 mL/min or a biopsy-proved chronic allograft nephropathy or rejection. The control group (n = 20) had an eGFR ≥ 60 mL/min without proteinuria and hematuria for a consecutive 3 months before the study. We performed RNA sequencing to profile the miRNAs expression. There were six differentially expressed miRNAs in the CAD group. Among them, miR-21-5p and miR-101-3p were decreased, and miR-20a-5p was increased. We found that miR-21-5p, miR-20a-5p and miR-101-3p all participated in the TGF-beta pathway. We demonstrated that decreased miR-21-5p and miR-101-3p, and increased miR-20a-5p were the novel CAD-associated miRNAs in the TGF-beta pathway. These findings may pave the way for developing early prediction miRNAs biomarkers for CAD, and possibly developing therapeutic tools in the field of kidney transplantation.  相似文献   

9.
Liver disease is a major cause of morbidity and mortality worldwide. As in other fields of medicine, there is a stringent need for non-invasive markers to improve patient diagnostics, monitoring and prognostic ability in liver pathology. Cell-free circulating RNA molecules have been recently acknowledged as an important source of potential medical biomarkers. However, many aspects related to the biology of these molecules remain to be elucidated. In this review, we summarize current concepts related to the origin, transportation and possible functions of cell-free RNA. We outline current development of extracellular RNA-based biomarkers in the main forms of non-inherited liver disease: chronic viral hepatitis, hepatocellular carcinoma, non-alcoholic fatty liver, hepato-toxicity, and liver transplantation. Despite recent technological advances, the lack of standardization in the assessment of these markers makes their adoption into clinical practice difficult. We thus finally review the main factors influencing quantification of circulating RNA. These factors should be considered in the reporting and interpretation of current findings, as well as in the proper planning of future studies, to improve reliability and reproducibility of results.  相似文献   

10.
11.
12.
13.
14.
15.
Bone fragility is an adverse outcome of type 2 diabetes mellitus (T2DM). The underlying molecular mechanisms have, however, remained largely unknown. MicroRNAs (miRNAs) are short non-coding RNAs that control gene expression in health and disease states. The aim of this study was to investigate the genome-wide regulation of miRNAs in T2DM bone disease by analyzing serum and bone tissue samples from a well-established rat model of T2DM, the Zucker Diabetic Fatty (ZDF) model. We performed small RNA-sequencing analysis to detect dysregulated miRNAs in the serum and ulna bone of the ZDF model under placebo and also under anti-sclerostin, PTH, and insulin treatments. The dysregulated circulating miRNAs were investigated for their cell-type enrichment to identify putative donor cells and were used to construct gene target networks. Our results show that unique sets of miRNAs are dysregulated in the serum (n = 12, FDR < 0.2) and bone tissue (n = 34, FDR < 0.2) of ZDF rats. Insulin treatment was found to induce a strong dysregulation of circulating miRNAs which are mainly involved in metabolism, thereby restoring seven circulating miRNAs in the ZDF model to normal levels. The effects of anti-sclerostin treatment on serum miRNA levels were weaker, but affected miRNAs were shown to be enriched in bone tissue. PTH treatment did not produce any effect on circulating or bone miRNAs in the ZDF rats. Altogether, this study provides the first comprehensive insights into the dysregulation of bone and serum miRNAs in the context of T2DM and the effect of insulin, PTH, and anti-sclerostin treatments on circulating miRNAs.  相似文献   

16.
MicroRNA (miRNA) plays a key role in development and specific biological processes, such as cell proliferation, differentiation, and apoptosis. Extensive studies of mammary miRNAs have been performed in different species and tissues. However, little is known about porcine mammary gland miRNAs. In this study, we report the identification and characterization of miRNAs in the lactating mammary gland in two distinct pig breeds, Jinhua and Yorkshire. Many miRNAs were detected as significantly differentially expressed between the two libraries. Among the differentially expressed miRNAs, many are known to be related to mammary gland development and lactation by interacting with putative target genes in previous studies. These findings suggest that miRNA expression patterns may contribute significantly to target mRNA regulation and influence mammary gland development and peak lactation performance. The data we obtained provide useful information about the roles of miRNAs in the biological processes of lactation and the mechanisms of target gene expression and regulation.  相似文献   

17.
庞珂 《广州化工》2010,38(9):156-157
美国石油学会标准API2000中关于外部火灾时的呼出量如何计算描述的非常详细,但是对调节阀事故开这种工况呼出量如何计算没有说明,本文结合巴斯夫的安全设计理念就主装置事故状态时且调节阀事故开时如何计算常压罐的呼出量进行了说明,以供其他设计项目参考。  相似文献   

18.
Myocardial infarction remains the most common cause of heart failure with adverse remodeling. MicroRNA (miR)155 is upregulated following myocardial infarction and represents a relevant regulatory factor for cardiac remodeling by engagement in cardiac inflammation, fibrosis and cardiomyocyte hypertrophy. Here, we investigated the role of miR155 in cardiac remodeling and dysfunction following myocardial infarction in a dyslipidemic mouse model. Myocardial infarction was induced in dyslipidemic apolipoprotein E-deficient (ApoE−/−) mice with and without additional miR155 knockout by ligation of the LAD. Four weeks later, echocardiography was performed to assess left ventricular (LV) dimensions and function, and mice were subsequently sacrificed for histological analysis. Echocardiography revealed no difference in LV ejection fractions, LV mass and LV volumes between ApoE−/− and ApoE−/−/miR155−/− mice. Histology confirmed comparable infarction size and unaltered neoangiogenesis in the myocardial scar. Notably, myofibroblast density was significantly decreased in ApoE−/−/miR155−/− mice compared to the control, but no difference was observed for total collagen deposition. Our findings reveal that genetic depletion of miR155 in a dyslipidemic mouse model of myocardial infarction does not reduce infarction size and consecutive heart failure but does decrease myofibroblast density in the post-ischemic scar.  相似文献   

19.
Glycogen storage disease type Ia (GSDIa) is an inherited metabolic disorder caused by mutations in the enzyme glucose-6-phosphatase-α (G6Pase-α). Affected individuals develop renal and liver complications, including the development of hepatocellular adenoma/carcinoma and kidney failure. The purpose of this study was to identify potential biomarkers of the evolution of the disease in GSDIa patients. To this end, we analyzed the expression of exosomal microRNAs (Exo-miRs) in the plasma exosomes of 45 patients aged 6 to 63 years. Plasma from age-matched normal individuals were used as controls. We found that the altered expression of several Exo-miRs correlates with the pathologic state of the patients and might help to monitor the progression of the disease and the development of late GSDIa-associated complications.  相似文献   

20.
Anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) comprises autoimmune disease entities that cause target organ damage due to relapsing-remitting small vessel necrotizing vasculitis, and which affects various vascular beds. The pathogenesis of AAV is incompletely understood, which translates to considerable disease- and treatment-related morbidity and mortality. Recent advances have implicated microRNAs (miRNAs) in AAV; however, their accurate characterization in renal tissue is lacking. The goal of this study was to identify the intrarenal miRNA expression profile in AAV relative to healthy, non-inflammatory and inflammatory controls to identify candidate-specific miRNAs. Formalin-fixed, paraffin-embedded renal biopsy tissue samples from 85 patients were obtained. Comprehensive miRNA expression profiles were performed using panels with 752 miRNAs and revealed 17 miRNA that differentiated AAV from both controls. Identified miRNAs were annotated to characterize their involvement in pathways and to define their targets. A considerable subset of differentially expressed miRNAs was related to macrophage and lymphocyte polarization and cytokines previously deemed important in AAV pathogenesis, lending credence to the obtained results. Interestingly, several members of the miR-30 family were detected. However, a validation study of these differentially expressed miRNAs in an independent, larger sample cohort is needed to establish their potential diagnostic utility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号