首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reservoir oil and gas content tends to rise up to the surface as long as their potential energy levels are sufficient. In order to amplify this energy, either during the time when oil is uprising on its inherent energy or since after, so as to facilitate the traveling of oil to the surface, enhanced oil recovery (EOR) methods come into play. Furthermore, the increasing demand for oil from one hand, and the shrinkage of producible reserves on the other hand, have made it unavoidable to undertake EOR techniques. Built in this research was a 10-element model of reservoir fluid to simulate its behavior. Furthermore, slim tube simulation was undertaken to determine minimum miscibility pressure for various gases. Then, different scenarios of natural depletion, CO2 injection, methane injection, and water injection were simulated by ECLIPSE 300 software package with the results of different scenarios compared. The results indicated water injection to be associated with higher recovery factor.  相似文献   

2.
Carbon dioxide flooding has been applied worldwide as a successful enhanced oil recovery. Carbon dioxide flooding may be applied as a continuous injection or as water-alternating-gas (WAG) process. Optimization of the injection mode of carbon dioxide is important for economical field application. This paper focuses on using a fully compositional simulation model for “AEB-3C” sandstone oil reservoir of one of the Western Desert oil fields in Egypt to predict the impact of CO2 miscible flooding on the reservoir oil recovery and net present value (NPV), to define the best mode of operation that is straight CO2 injection or water alternating gas (WAG) processes and to show the difference between pure and impure CO2. Moreover, several sensitivity runs were done on the oil price to show minimum profitable value of oil price when applying such a tertiary method in the subject field.The reservoir under study has been producing under a successful water flooding project since May-2010. The recovery factor by the end of water flooding project is predicted as 32%. CO2 flooding processes have started by the end of water flooding. A significant increase in the oil recovery factor was noticed due to applying this method; it reached up to 57%. Comparisons between different modes of operations were shown which showed better results when applying WAG process than that with straight CO2 injection. Moreover; sensitivities were done on the cycle periods in WAG processes and showed increase in the recovery factor with shortening the cycle periods. In addition to a comparison between pure and impure CO2 which showed very close results.  相似文献   

3.
Due to high cost and technical uncertainty of recovery processes, predictive models developed for CO2 miscible flooding processes should be used to evaluate the production performance of projects. This study presents the reservoir simulation study and probabilistic cash flow analysis of CO2 miscible flooding projects in West Virginia. An extended black oil reservoir simulator was used in this study. Historical data and information from a CO2 injection pilot in Granny's Creek Field of Clay County in West Virginia were used. A history match was done, and then alterative matched cases were run, such as pure CO2 injection and water-alternate-gas (WAG) injection. A PC-based probabilistic cash flow analysis (PCFA) model was developed to analze the economic evaluation of the CO2 miscible flooding project on a popular spreadsheet.Statistical analysis of the results shows: (1) the WAG case is more profitable than the pure CO2 injection case; (2) the pure CO2 injection case and the WAG case are more economical than the base case. Therefore, given current oil prices, the CO2 processes have a higher potential to succeed in tec technical aspects but not in economical aspects. This study initiates the adaptation of the model to specific parameters of West Virginia oil fields. The newly formulated microcomputer PCFA model overcomes some of the problems commonly found in the conventional Monte Carlo simulation. Thus, the simulation approach in economic assessment and risk analysis can be readily adopted in future projects.  相似文献   

4.
Abstract

The authors used experiment and full-field reservoir modeling to investigate and optimize the design of a CO2 miscible flooding project for the Minnelusa reservoir of the South Slattery field. Minimum miscibility pressure and core flooding tests were conducted to estimate the CO2 injection feasibility at Slattery conditions. A full-field CO2 model with finely gridded patterns was built using oil saturations and pressures at the end of history in the waterflood model. The CO2 model identified the best patterns for CO2 flooding and was instrumental in selecting a strategy for sizing the initial flood area and in determining the size, location, and timing of future expansions of the CO2 flood. Continuous CO2 miscible injection (CMI) and alternating (WAG) were simulated. WAG injections were simulated mainly to observe the improvement of low sweep efficiency caused by override and unfavorable mobility ratio. The integrated recovery efficiency comparison of CMI and WAG was used to demonstrate the mobility control of the WAG process.  相似文献   

5.
Abstract

The high-temperature and high-pressure three-dimensional (3D) device is used to study miscible flooding of CO2 and crude oil. The experiment model is a real sand plate. In oil reservoir condition, there is a large difference between production and injection volume. The complex flowing characteristics of CO2 flooding in pore media are observed in recovery, water cut, and gas–oil ratio curves. By analyzing the water saturation contour plot measured by a saturation probe, CO2 and oil can be miscible. The viscosity of miscible liquid and flowing pressure decreases. This is the important mechanism of enhanced oil recovery. When the viscosity of miscible liquid and flowing pressure decreases, miscible CO2 and oil contacted with water can make a similar three phase. This is the important mechanism of enhanced oil recovery. Based on the conclusion, the main reason for the production and injection difference is that high-density CO2 would flow into pore media in which water and oil cannot flow.  相似文献   

6.
针对X底水油藏油井注水后综合含水上升过快的问题,利用HB70/300型高压物性分析仪开展了该区块原油相态特征实验、注气相态特征实验,并运用细管法开展了注CO2最小混相压力实验。对比分析了CO2和N2两种性质气体注入前后原油的相态特征变化,确定了该区块原油注CO2最小混相压力,为X油藏注气提高采收率可行性提出依据。实验结果表明,X油藏原始地层压力为46.01 MPa,原油饱和压力为11.06 MPa,注N2后饱和压力上升迅速,在原始地层条件下难以实现混相,表现出典型的非混相特征;注CO2后饱和压力上升较平缓,细管法测得的最小混相压力为28.03 MPa,说明利用CO2可实现CO2的混相驱替,而且最终的驱替效果比较理想。说明该油藏可开展注CO2混相驱,为进一步的开发方案调整提供了依据和合理的建议。   相似文献   

7.
Carbon dioxide (CO2) miscible flooding has become an important method in enhanced oil recovery (EOR) for recovering residual oil. In addition it may help in protection of the environment as (CO2) is widely viewed as an important agent in global warming. Knowledge of the interactions between (CO2) and reservoir crude oil is very critical for any (CO2)-enhanced oil recovery (EOR) projects. This paper shows the effect of (CO2) miscible flooding application for Egyptian oil fields by swelling studies. The swelling test is a laboratory simulation of the process of injecting gradually different percentage of (CO2) gas into a reservoir containing under-saturated oil. The gas (injection solvent) can dissolve, causing the reservoir fluid to swell. This paper presents a summary of a wide range of laboratory tests conducted on ten different crude oils varying from 26.4 to 40.5 API. These were used to invested the use of (CO2) and its effect on parameters such as viscosity, density, gas solubility and swelling factor as a function of pressure at temperature from 620.3 to 706.0?°R.  相似文献   

8.
新疆油田九_6区齐古组浅层稠油油藏已进入蒸汽开采中后期,油藏开采经历了蒸汽吞吐、加密调整、蒸汽驱过程,采出程度为37%。现阶段单一蒸汽驱效果明显下降,地层亏空严重,蒸汽热利用效率低,吸汽不均,波及程度差异大,油水流度比大,采收率低。热水复合CO_2驱油充分利用热水热效应和发挥CO_2溶解降黏等作用,是提高原油采收率的有效方法。因此,针对九_6区稠油开展不同混合方式热水/CO_2驱油模拟实验,分别研究了纯热水驱、热水与CO_2混注、热水与CO_2段塞的驱油效率。结果表明,纯热水驱累积驱油效率为49.19%,热水/CO_2混注累积驱油效率最大为71.25%,段塞驱累积驱油效率高达85.96%。同时,分析了驱出原油及岩心残余油组分变化。  相似文献   

9.
CO2 flooding is considered not only one of the most effective enhanced oil recovery(EOR) methods,but also an important alternative for geological CO2 storage.In this paper,the visualization of CO2 flooding was studied using a 400 MHz NMR micro-imaging system.For gaseous CO2 immiscible displacement,it was found that CO2 channeling or fingering occurred due to the difference of fluid viscosity and density.Thus,the sweep efficiency was small and the final residual oil saturation was 53.1%.For supercritical CO2 miscible displacement,the results showed that piston-like displacement occurred,viscous fingering and the gravity override caused by the low viscosity and density of the gas was effectively restrained,and the velocity of CO2 front was uniform.The sweep efficiency was so high that the final residual oil saturation was 33.9%,which indicated CO2 miscible displacement could enhance oil recovery more than CO2 immiscible displacement.In addition,the average velocity of CO2 front was evaluated through analyzing the oil saturation prof ile.A special core analysis method has been applied to in-situ oil saturation data to directly evaluate the local Darcy phase velocities and capillary dispersion rate.  相似文献   

10.
The authors present the results of numerical tests and simulations to investigate and analyze the likelihood of asphaltene precipitation and deposition during CO2 flooding in a reservoir. The effects of asphaltene precipitation on oil properties such as oil viscosity and density during miscible CO2 flooding process were elaborated by using Winprop software of Computer Modeling Group. Also oil properties change during CO2 miscible flooding by numerical slim tube were investigated by a compositional simulator (GEM). A fluid sample of Saskatchewan Reservoir that had been flooded miscibly with CO2 was chosen for performing the sensitivity analyses. The results showed that asphaltene precipitation reduces the oil viscosity and density that is in favor of production increasing. On the other hand asphaltene deposition causes resistance in oil production due to porosity and permeability reduction. The competition between these two effects declares the positive or negative effect of asphaltene on recovery that could be different for each reservoir. The results also show that decreasing the rate of CO2 injection leads to an increase in asphaltene deposition near the injective well. Due to this phenomenon in higher injecting rates the increment in well bottom-hole pressure becomes less.  相似文献   

11.
M-Reservoir is a dual porosity fractured reservoir having active aquifer and heterogenous production zones. It had had only a total oil recovery of 8.4% with the total production of 240 MMSTB up to 2008. By simulation of slime tube experiment using Eclipse 300 software, minimum miscibility pressure of 3700 psia was obtained, which was below its average pressure. Production optimization and final recovery increment were performed via analyzing and matching of fluid reservoir, history matching of past reservoir performance, and investigating on different location of gas injected well. The best location of injected well was selected based on the recovery coefficient and gas injection method of miscible and immiscible at various rates and were compared with natural depletion in selected locations. The results represent that the miscible gas injection has more recovery coefficient than natural depletion and there is somewhat recovery coefficient in comparison with immiscible gas injection.  相似文献   

12.
Abstract

Naturally fractured reservoirs contain a significant amount of world oil reserves. Accurate and efficient reservoir simulation of naturally fractured reservoirs is one of the most important, challenging, and computationally intensive problems in reservoir engineering. Black oil and compositional reservoir simulators have been used to determine the reservoir management and production strategies to increase the oil recovery from a low-porosity, low-permeability fractured carbonate reservoir, with an average matrix permeability of 0.8 md, average fracture permeability of 500 md, and an average matrix porosity of 10%. This reservoir is a candidate for an enhanced oil recovery (EOR) process, because the reservoir production rate has been declined due to increasing the water cut as a result of rising the water oil contact. The injection techniques that have been considered in this study for black oil model include (a) gas injection, (b) water injection, and (c) simultaneous water alternating gas injection and for the compositional model include (a) dry gas injection, (b) CO2 injection, and (c) N2 injection. Simulation results show that CO2 injection has the maximum oil recovery between the EOR scenarios.  相似文献   

13.
In this study, the interfacial tension (IFT) of crude oil-carbon dioxide mixtures was measured to determine the minimum miscibility pressure. CO2 flooding with sand packs, long cores, and heterogeneous cores was conducted to investigate the oil recovery and storage efficiency. The experiment results show that the interfacial tension decreases linearly with increasing pressure at two different pressure ranges. Under immiscible condition, the oil recovery and storage efficiency are increased by 30.1% and 52.4% when the injection pressure is increased from 13 to 22 MPa, and improved by 16.3% and 22.04% when the permeability is decreased from 270 to 10 mD, respectively. Under miscible condition, increase of injection pressure can only lead to much slower increase of oil recovery and storage efficiency, and permeability almost has no influence on oil recovery and storage efficiency. The oil recovery and storage efficiency can be remarkably reduced by heterogeneity. Water alternating CO2 injection can improve the oil recovery and storage efficiency by 35.5% and 13.55%, respectively, compared with continuous injection.  相似文献   

14.
To further improve the oil displacement effect by CO2 flooding, the trends and conditions of asphaltene deposition under different injection pressures and injection volumes of CO2 were studied by SDS solid phase deposition testing system, high temperature and high pressure microscope, and P-X phase diagram. When the mole fraction of CO2 in crude oil increases to a certain value, asphaltene deposition appears. The lower the pressure, the lower the mole fraction of CO2 in crude oil causing the asphaltene deposition there is. After the onset of asphaltene deposition, the degree of deposition increases with an increase in pressure. The amount of the deposited asphaltene under miscible displacement is the highest, under near-miscible displacement is the second highest, and under immiscible displacement is the lowest. When the dissolution of CO2 in crude oil reaches the saturation point, the asphaltene deposition becomes slow. Besides, it is feasible to prevent or reduce the asphaltene deposition by adjusting the thermodynamic parameters according to the phase behaviors of the CO2-crude oil system. The experimental results can provide theoretical basis for optimization design of the parameters of CO2 flooding.  相似文献   

15.
Miscible CO2 injection process has become widely used technique for the enhanced oil recovery in low permeability reservoirs. Core flooding experiments and field test of CO2 miscible flooding in low permeability sandstone reservoirs and its influence on crude oil properties was studied. The results showed that CO2 miscible flooding in low permeability sandstone reservoirs can enhance oil recovery both in laboratory study and field test. The permeability of sandstone reservoirs decreased during CO2 miscible flooding due to the precipitation of asphaltene of crude oil. The precipitation of asphaltene lead to a reduction of asphaltene content and the apparent viscosity of crude oil. A further study on inhibitors and removers for asphaltene deposits from crude oil should be investigated to prevent and remove asphaltene deposits in low permeability sandstone reservoirs.  相似文献   

16.
The injection of fuel-generated CO2 into oil reservoirs will lead to two benefits in both enhanced oil recovery (EOR) and the reduction in atmospheric emission of CO2. To get an insight into CO2 miscible flooding performance in oil reservoirs, a multi-compositional non-isothermal CO2 miscible flooding mathematical model is developed. The convection and diffusion of CO2-hydrocarbon mixtures in multiphase fluids in reservoirs, mass transfer between CO2 and crude, and formation damages caused by asphaltene precipitation are fully considered in the model. The governing equations are discretized in space using the integral finite difference method. The Newton-Raphson iterative technique was used to solve the nonlinear equation systems of mass and energy conservation. A numerical simulator, in which regular grids and irregular grids are optional, was developed for predicting CO2 miscible flooding processes. Two examples of one-dimensional (1D) regular and three-dimensional (3D) rectangle and polygonal grids are designed to demonstrate the functions of the simulator. Experimental data validate the developed simulator by comparison with 1D simulation results. The applications of the simulator indicate that it is feasible for predicting CO2 flooding in oil reservoirs for EOR.  相似文献   

17.
江苏油田CO2混相驱现场试验研究   总被引:9,自引:7,他引:9  
对江苏油田富14断块进行的可行性研究结果表明,复杂小断块油藏可以进行经济有效的CO2混相驱。江苏油田富14断块在保持最低混相压力的状态下,于1998年末开始进行了CO2—水交替(WAG)的注入试验。进行了6周期的注入试验后,水气比由0.86:1升至2:1。油井见到了明显的增油降水效果,水驱后油层中形成了新的含油富集带。试验区采油速度由0.5%升至1.2%,综合含水率由93.5%降至63.4%。到目前为止,CO2波及区采收率已提高4%,CO2利用率为1240m3/t(油)。试验仍在继续进行。富14断块CO2混相驱的成功为提高复杂小断块油藏采收率和丰富国内三次采油技术提供了重要的依据。  相似文献   

18.
A comprehensive analysis of the CO2 Huff-n-Puff process with application to representative light oil system contained within a fractured porous media is present in this article. To accomplish this work, a simulation model representative of the laboratory experimental model was built and constrained under similar laboratory conditions. Six sets of CO2 Huff-n-Puff experiments were conducted at injection pressures of 1723–10342 kPa; moreover, additional sensitivity analysis was performed on the 5170 and 6894 kPa conditions for different permeability and porosity. Results of this study demonstrate that cyclic injection of CO2 under miscible conditions performs more favorably than under immiscible injection conditions.  相似文献   

19.
Abstract

The objective of this study was to experimentally investigate the performance of water-alternating gas (WAG) injection in one of Iran's oil reservoirs that encountered a severe pressure drop in recent years. Because one of the most appropriate studies to evaluate the reservoir occurs generally on rock cores taken from the reservoir, core samples drilled out of the reservoir's rock matrix were used for alternating injection of water and gas. In the experiments, the fluid system consisted of reservoir dead oil, live oil, CO2, and synthetic brine; the porous media were a number of carbonate cores chosen from the oilfield from which the oil samples had been taken. All coreflood experiments were conducted using live (recombined) oil at 1,700 psi and reservoir temperature of 115°F. A total of four displacement experiments were performed in the core, including two experiments on secondary WAG injection and others on the tertiary water and gas invaded zones WAG injections. Prior to each test porosity and permeability of dried cores were calculated then 100% water-saturated cores were oil-flooded to obtain connate water saturation. Therefore, all coreflooding tests started with the samples at irreducible water saturation. Parameters such as oil recovery factor, water cut, and gas-oil ratio and production pressure of the core were recorded for each test. The most similar experimental work with the main reservoir condition, indicated that approximately 64% oil were recovered after 1 pore volume of WAG process at 136,000 ppm brine salinity. Although tests show ultimate recovery of 79% and 55% for secondary and tertiary injection in gas and water invaded zones, respectively, immiscible WAG injection efficiency in the gas and water invaded zones will not be proper. In the similar test to field properties, the average pressure difference about 70 Psig was observed, which shows stable front displacement. These experiments showed that there was significant improvement in the oil recovery for alternating injection of water and CO2, especially in the secondary recovery process. Water breakthrough time in almost all of the tests shows frontal displacement of injected fluid in cores and produced gas-oil ratio changes a little whenever the injection is miscible and increases rapidly in immiscible processes.  相似文献   

20.
CO2 injection for enhanced oil recovery (EOR) had been broadly investigated both physically and economically. The concept for enhanced gas recovery (EGR) is a new area under discussion that had not been studied as comprehensively as EOR. In this paper, the “Tempest” simulation software was used to create a three-dimensional reservoir model. The simulation studies were investigated under different case scenarios by using experimental data produced by Clean Gas Technology Australia (CGTA). The main purpose of this study is to illustrate the potential of enhanced natural gas recovery and CO2 storage by re-injecting CO2 production from the natural gas reservoir. The simulation results outlined what factors are favourable for the CO2-EGR and storage as a function of CO2 breakthrough in terms of optimal timing of CO2 injection and different injection rates. After analysing the results for each case scenario, it had been concluded that CO2 injection can be applied to increase natural gas recovery simultaneously sequestering a large amount of the injected CO2 for this particular gas reservoir. In addition, various CO2 costs involved in the CO2-EGR and storage were investigated to determine whether this technique is feasible in terms of the CO2 content in the production as a preparation stage to achieve the economic analysis for the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号