共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
现有的基于信任的推荐算法通常假设用户是单一和同质的,没有充分挖掘信任关系信息,且相似关系和信任关系的融合缺乏高效的模型,极大地影响了推荐的准确性和可靠性。本文提出一种基于信任的推荐算法。首先结合全局信任和局部信任,并利用信任的传播性质对信任关系进行建模,然后设置推荐权重,综合考虑相似度和信任度来构建用户间的偏好关系,筛选出邻居。接着将基于记忆的协同过滤思想和社交网络的信任关系融入概率矩阵分解模型,同时使用自适应权重动态决定各部分的影响程度,形成高效统一的可信推荐模型Trust-PMF。本文的算法在FilmTrust、Epinions这两个数据集上与相关算法做了对比验证,结果证实了此算法的高效性。 相似文献
3.
Ryma Abassi 《控制论与系统》2013,44(7-8):475-496
AbstractTrust allows collaborating entities to cope with their uncertainty especially when these collaborations are the bedrock of the network existence such as in Mobile Ad hoc NETworks (MANET). The trustworthiness of collaborators can be evaluated using reputations. Reputation is an appreciation of the node credibility created through past actions. It can be calculated using direct observations and/or using other nodes appreciations exchanged through recommendations. Unfortunately, some nodes may be attempted to disturb the network by sending faked recommendations in order to decrease the reputation of a benevolent node or to increase the one of an attacker. That’s collusion attack. The main contribution of this paper concerns then, the proposition of collusion prevention and detection process in a trust based MANET. 相似文献
4.
Recent years have witnessed a growing trend of Web services on the Interact. There is a great need of effective service recommendation mechanisms. Existing methods mainly focus on the properties of individual Web services (e.g., func- tional and non-functional properties) but largely ignore users' views on services, thus failing to provide personalized service recommendations. In this paper, we study the trust relationships between users and Web services using network modeling and analysis techniques. Based on the findings and the service network model we build, we then propose a collaborative filtering algorithm called Trust-Based Service Recommendation (TSR) to provide personalized service recommendations. This systematic approach for service network modeling and analysis can also be used for other service recommendation studies. 相似文献
5.
6.
Explanation in Recommender Systems 总被引:8,自引:0,他引:8
There is increasing awareness in recommender systems research of the need to make the recommendation process more transparent
to users. Following a brief review of existing approaches to explanation in recommender systems, we focus in this paper on
a case-based reasoning (CBR) approach to product recommendation that offers important benefits in terms of the ease with which
the recommendation process can be explained and the system’s recommendations can be justified. For example, recommendations
based on incomplete queries can be justified on the grounds that the user’s preferences with respect to attributes not mentioned
in her query cannot affect the outcome. We also show how the relevance of any question the user is asked can be explained
in terms of its ability to discriminate between competing cases, thus giving users a unique insight into the recommendation
process. 相似文献
7.
推荐系统在解决信息过载方面已经取得了很大的成功,同时也存在数据稀疏、冷启动等问题。如何在评分数据稀疏的情况下获得满意的推荐成为推荐系统亟待解决的问题。将信任引入推荐系统成为解决上述问题的有效方法之一。已有的信任感知推荐系统大多基于布尔型信任关系,且没有考虑信任的领域相关性。在服务选择领域,服务请求者依据QoS(quality of service)选择服务。联想到在服务推荐领域推荐请求者可以依据推荐质量(quality of recommendation,QoR)选择推荐用户,提出了推荐质量(QoR)的概念和基于推荐质量的信任感知推荐系统。QoR的属性包含评价相似度、领域信任值、领域相关度和亲密程度,利用信息熵方法可确定各属性的权重。仿真表明该方法提高了推荐系统在数据稀疏情况下的精确度和评分覆盖率,有效提高了冷启动用户的召回率,在一定程度上解决了冷启动问题。 相似文献
8.
《IEEE transactions on systems, man, and cybernetics. Part A, Systems and humans : a publication of the IEEE Systems, Man, and Cybernetics Society》2008,38(6):1-1272
9.
10.
Recommender systems play a significant role in reducing information overload for people visiting online sites, but their accuracy could be improved by using data from online social networks and electronic communication tools. 相似文献
11.
12.
基于位置的社会化网络推荐系统 总被引:1,自引:0,他引:1
近年来,基于位置的社会化网络推荐系统逐渐成为位置服务和社会网络分析的活跃课题之一.挖掘用户签到位置轨迹和社交活动数据,提取用户社会活动的地理空间特征模型及其与社会关系的关联性,设计合理的推荐算法,成为当前基于位置的社会化网络推荐系统的主要任务.该文从分析基于位置的社会化网络的结构特征人手,对基于位置的社会化网络推荐系统的基本框架、基于不同网络层次数据挖掘的推荐方法及应用类型等进行前沿概况、比较和分析.最后对有待深入研究的难点和热点进行分析和展望. 相似文献
13.
推荐系统可以帮助网民从大量纷繁的信息中找到目标信息,能有效提高网民信息检索能力,然而推荐系统存在数据稀疏性、冷启动以及系统性能方面的问题。为解决这方面的问题,提出将社交关系应用于推荐系统,该方法是提高推荐准确性的一个重要途径,在多年的科研实践中取得了重要进展,因此该研究方向也日益成为众多学者关注的领域,有关这方面的研究也越来越活跃。通过对社会化推荐系统概念进行梳理,对社会化推荐系统与传统推荐系统进行比较,回顾总结了社会化推荐系统的研究现状,希望能从研究现状中找出新规律,寻求新的突破点,并对社会化推荐系统的发展趋势进行展望,以期对后来研究者有所帮助。 相似文献
14.
Retrieval Failure and Recovery in Recommender Systems 总被引:2,自引:0,他引:2
David Mcsherry 《Artificial Intelligence Review》2005,24(3-4):319-338
15.
Matrix Factorization Techniques for Recommender Systems 总被引:14,自引:0,他引:14
As the Netflix Prize competition has demonstrated, matrix factorization models are superior to classic nearest-neighbor techniques for producing product recommendations, allowing the incorporation of additional information such as implicit feedback, temporal effects, and confidence levels. 相似文献
16.
17.
18.
Neural Processing Letters - In recommender systems, supervised information is usually obtained from the historical data of users. For example, if a user watched a movie, then the user-movie pair... 相似文献
19.
Felfernig Alexander Friedrich Gerhard Schmidt-Thieme Lars 《Intelligent Systems, IEEE》2007,22(3):18-21
This special issue presents eight articles, five long and three short, on techniques to improve recommender systems. They cover improving such aspects as user interaction with recommenders, the quality of results presented to users, and user trust in presented recommendations. This article is part of a special issue on Recommender Systems. 相似文献
20.
随着互联网和信息计算的飞速发展,衍生了海量数据,我们已经进入信息爆炸的时代。网络中各种信息量的指数型增长导致用户想要从大量信息中找到自己需要的信息变得越来越困难,信息过载问题日益突出。推荐系统在缓解信息过载问题中起着非常重要的作用,该方法通过研究用户的兴趣偏好进行个性化计算,由系统发现用户兴趣进而引导用户发现自己的信息需求。目前,推荐系统已经成为产业界和学术界关注、研究的热点问题,应用领域十分广泛。在电子商务、会话推荐、文章推荐、智慧医疗等多个领域都有所应用。传统的推荐算法主要包括基于内容的推荐、协同过滤推荐以及混合推荐。其中,协同过滤推荐是推荐系统中应用最广泛最成功的技术之一。该方法利用用户或物品间的相似度以及历史行为数据对目标用户进行推荐,因此存在用户冷启动和项目冷启动问题。此外,随着信息量的急剧增长,传统协同过滤推荐系统面对数据的快速增长会遇到严重的数据稀疏性问题以及可扩展性问题。为了缓解甚至解决这些问题,推荐系统研究人员进行了大量的工作。近年来,为了提高推荐效果、提升用户满意度,学者们开始关注推荐系统的多样性问题以及可解释性等问题。由于深度学习方法可以通过发现数据中用户和项目之间的非线性关系从而学习一个有效的特征表示,因此越来越受到推荐系统研究人员的关注。目前的工作主要是利用评分数据、社交网络信息以及其他领域信息等辅助信息,结合深度学习、数据挖掘等技术提高推荐效果、提升用户满意度。对此,本文首先对推荐系统以及传统推荐算法进行概述,然后重点介绍协同过滤推荐算法的相关工作。包括协同过滤推荐算法的任务、评价指标、常用数据集以及学者们在解决协同过滤算法存在的问题时所做的工作以及努力。最后提出未来的几个可研究方向。 相似文献