首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A hydrophobically associating copolymer was prepared by free‐radical polymerization with acrylamide (AM), acrylic acid (AA), and N‐allyloctadec‐9‐enamide (NAE) as monomers. The structure was characterized by Fourier transform infrared spectroscopy, 1H‐NMR, 13C‐NMR, and scanning electron microscopy. The rheological experiments indicated that the copolymer possessed superior properties compared with partially hydrolyzed polyacryamide. It was found that an AM/AA/NAE/Tween‐80 system could effectively decrease the interfacial tension and reduce the surfactant loss caused by stratum adsorption in polymer–surfactant flooding. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2901–2911, 2013  相似文献   

2.
A novel hydrophobically modified and cationic flocculant poly(acrylamide‐methacryloxyethyltrimethyl ammonium chloride‐methacryloxypropyltrimethoxy silane) (P(AM‐DMC‐MAPMS)) was synthesized by inverse emulsion polymerization. The molecular structure of hydrophobically cationic polyacrylamide (HCPAM) was characterized by FTIR and 1H‐NMR. The effects of DMC and MAPMS feed ratio on intrinsic viscosity and solubility were measured. The effects of hydrophobically cationic flocculants on reactive brilliant red X‐3B solution and kaolin suspension were studied. It was found that the introduction of MAPMS could increase the intrinsic viscosities of P(AM‐DMC‐MAPMS) and enhance the flocculation properties to anionic dye solution and kaolin suspension, but reduced their water‐solubility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
This work focuses on the AFM study of the aggregation morphology and association mechanism of the hydrophobically‐association water‐soluble polymer P (AM‐AA‐BPAM) in aqueous solution. It shows that the P (AM‐AA‐BPAM) molecule chain, which has hydrophobic and hydrophilic ionic groups, forms the “spherical” aggregations as micelles below 0.2 g · dL?1, and then connect each other to form the string‐like aggregations, which produce large viscosity for the polymer solution. It is also coincident with the FCS, DLS, and viscosity study result. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1175–1178, 2004  相似文献   

4.
N,N‐Diallyl nicotinamide (DANA) and acrylic acid (AA) were used to react with acrylamide (AM) and synthesize a novel nicotinic acid functionalized water‐soluble copolymer AM/AA/DANA by redox free‐radical polymerization. Then, the acrylamide/sodium acrylamido methanesulfonate/acrylic acid/N,N‐diallyl nicotinamide (AM/AMS/AA/DANA) was obtained by the introduction of the ? SO3? group into AM/AA/DANA after sulfomethylation. The optimal reaction conditions, such as the monomer ratio, initiator concentration, reaction temperature, and pH of the copolymerization or sulfomethylation, were investigated. Both AM/AA/DANA and AM/AMS/AA/DANA were characterized by IR spectroscopy, 1H‐NMR, scanning electron microscopy, and intrinsic viscosity testing. We found that the AM/AMS/AA/DANA had a remarkable temperature tolerance (120°C, viscosity retention rate = 39.8%), shear tolerance (1000 s?1, viscosity retention rate = 23.3%), and salt tolerance (10 g/L NaCl, 1.5 g/L MgCl2, 1.5 g/L CaCl2, viscosity retention rates = 37.4, 27.5, and 21.6%). In addition, the result of the core flood test showed that the about 13.1% oil recovery could be enhanced by 2.0 g/L AM/AMS/AA/DANA at 70°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40165.  相似文献   

5.
Hydrophobically associating copolymers using acrylamide (AM), acrylic acid (AA), and Styrene (St) as comonomers were successfully prepared by self-emulsified microemulsion polymerization, in which low-molecular-weight AM/AA/St copolymers as surfactant and AM as cosurfactant. The structure and chemical composition of AM/AA/St copolymers were characterized by Fourier transform infrared, nuclear magnetic (NMR), and differential scanning calorimeter. The content of PSt in the copolymers is determined by 1H nuclear magnetic resonance spectra, suggesting that the self-made polymer surfactant can disperse uniformly the St monomers to improve the copolymerization efficiency. Furthermore, the polymerization mechanism of the self-emulsified microemulsion method is explored preliminarily. During the synthesis of the copolymers, the purified copolymer solution is obtained in one step without using a small molecular emulsifier such as sodium dodecyl sulfate, in order to avoid the complicated post-treatment process of the small molecular emulsifier. The copolymers revealed good hydrophobic association properties and low surface tension.  相似文献   

6.
Yi Dan  Qi Wang 《Polymer International》2001,50(10):1109-1114
A homogeneous complex solution, formed through inter‐polyelectrolyte complexation of poly(acrylamide‐co‐acrylic acid) (P(AM‐AA)) with poly(acrylamide‐co‐dimethyldiallylammonium chloride) (P(AM‐DMDAAC)) and interaction of the P(AM‐AA)/P(AM‐DMDAAC) complex with M n+ hydrated metal ion, was prepared and the structure and properties of the P(AM‐AA)/P(AM‐DMDAAC)/M n+ homogeneous complex solution were studied by UV spectrometry, dynamic light scattering and viscometry. The experimental results show that the homogeneous complex solution can be obtained by controlling the composition of the P(AM‐AA)/P(AM‐DMDAAC) complex and the M n+ metal ion content. Compared to the constituents, ie the P(AM‐AA) solution, the P(AM‐DMDAAC) solution and the P(AM‐AA)/P(AM‐DMDAAC) complex solution, the P(AM‐AA)/P(AM‐DMDAAC)/M n+ complex solution has a new peak at 270 nm in its UV spectrum, a larger hydrodynamic radius, and hence a higher solution viscosity, all of which indicate that there exist specific interactions between polymers and M n+ metal ions. These interactions lead to the formation of a network structure and hence an obvious increase not only in solution viscosity but also in resistance of the polymer solution to simple salts, to temperature changes and to shearing. © 2001 Society of Chemical Industry  相似文献   

7.
耿同谋 《精细化工》2007,24(9):914-918
采取前加碱二元胶束共聚-后水解法合成了三元疏水缔合水溶性聚合物聚(丙烯酰胺/丙烯酸钠/N,N-双烯丙基十六胺)[P(AM/NaAA/DiAC16)],研究了其水溶液的黏度行为。当x(DiAC16)=0.10%~0.40%时,在30℃、1 mol/LNaCl水溶液中,P(AM/NaAA/DiAC16)的特性黏数[η]、Huggins常数KH、黏均相对分子质量Mη分别为22.59~19.62 dL/g、0.144~0.294和12.49×106~10.47×106g/mol;KH小于0.8,表明其分子内缔合作用较弱。P(AM/NaAA/DiAC16)在矿化度为19 334μg/g盐水溶液中的表观黏度随疏水单体用量的增加而增加,随温度、剪切速率的增加而降低。在NaCl、CaCl2的离子强度分别为1.26×10-3~4.88×10-3mol/kg、1.07×10-4~5.28×10-4mol/kg的水溶液中,P(AM/NaAA/DiAC16)出现盐增黏现象,疏水单体用量越高,盐增黏效应越显著。当ρ(SDS)=0~0.07 g/dL时,P(AM/NaAA/DiAC16)水溶液的表观黏度有明显增加,表明P(AM/NaAA/DiAC16)/SDS分子缔合作用较强。  相似文献   

8.
The conventional partially hydrolyzed polyacrylamide (HPAM) is greatly restricted by its single linear molecular structure in oil reservoirs with severe reservoir conditions such as high temperature and high salt. In this article, the chitosan (CS) grafted imidazoline monomer copolymer (CS-g-AM/AA/NIDA) was prepared from N-maleyl CS (N-MCS), acrylamide (AM), acrylic acid (AA), 1-(2-N-acryloylaminoethyl)-2-oleoyl imidazoline (NIDA) by free radical copolymerization. The structure was determined by means of Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, scanning electron microscope, thermal gravimetric analysis, and so forth, which confirmed the successful preparation of the copolymer with good thermal stability. Under the same conditions, compared with HPAM and copolymer CS-g-AM/AA, CS-g-AM/AA/NIDA greatly increased the viscosity of the aqueous solution and exhibited excellent shear stability (viscosity retention rate 15.62, 4.91, and 11.54% at 510 s−1), temperature resistance (the viscosity retention rate reached 50.89, 24.50, and 36.59% at 120°C) and salt resistance (14,000 mg/L NaCl: viscosity retention rate up to 17.27, 8.26, and 14.60%). In addition, core flooding experiments showed that oil recovery could be enhanced by up to 8.08% by CS-g-AM/AA/NIDA. As a natural polymer material, CS has hardly been reported for polymer flooding, and it is expected to replace general polymers in tertiary oil recovery.  相似文献   

9.
In this present paper the influence of viscosity on the ionic dynamics of polymer gel electrolytes prepared by the Pechini polymeric precursor method is investigated by impedance spectroscopy, differential scanning calorimetric (DSC) and NMR techniques. Polymer gel electrolytes are formed by ethylene glycol (EG) and citric acid (CA) and lithium perchlorate. Room temperature conductivity of the order of 2.3 × 10−4 S/cm was obtained for the sample of EG/CA:LiClO4 with lower viscosity (η = 197 cP). The results show that the ionic conductivity of the electrolytes increases for decreasing viscosity. Proton (1H) and Lithium (7Li) NMR lineshapes and spin-lattice relaxation times were measured as a function of temperature and viscosity (197-868 cP). The 7Li relaxation process was found to be dominated by quadrupolar couplings. The activation energy extracted from the 1H and 7Li relaxation data (∼0.23 eV) was found to be independent of the viscosity of the gel electrolyte. The 7Li NMR relaxation results indicate an increase of the lithium ion mobility with decreasing viscosity.  相似文献   

10.
In this article, a hydrophobically associating copolymer (2‐acrylamido)‐2‐methylpropanesulfonic acid (AMPS)/AA‐EO25C12 was synthesized by AMPS and nonionic surfmer AA‐EO25C12 through free radical copolymerization. The structure of copolymer was characterized by FT‐IR and 1H‐NMR. The properties of copolymer were studied and the results indicated that the copolymer exhibits good thickening ability due to intermolecular hydrophobic associations as the apparent viscosity of the copolymer solution increases sharply with increasing polymer concentration. Compared with homopolymer PAMPS, the rheological test indicates that the copolymer solution shows shear thickening behavior at low shear rate region. Besides, the copolymer exhibits interfacial activity as it can reduce the interfacial tension to 10° level, and ability to form emulsion with good stability, which is due to successfully introducing the structure of nonionic surfmer AA‐EO25C12 to the polymer chain. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43195.  相似文献   

11.
Hydrophobically associating polyacrylamides (HAPAMs) or hydrophobically associating hydrolyzed polyacrylamides (HHAPAMs) are generally prepared by micellar copolymerization which leads to a blocky distribution of hydrophobes and drifted compositions. In the present study, a series of HAPAMs were prepared by direct N-alkylation of the amide groups of a parent polyacrylamide (PAM) in DMSO with alkyl bromide in the presence of potassium tert-butoxide. The derivatives HHAPAMs with various charge densities were obtained by partial hydrolysis of HAPAM precursors with 0.25 M NaOH in a 0.1 M NaCl aqueous solution at 50 °C. Molecular weight determination showed no degradation occurred in both processes. 1H and 13C solution NMR elucidations of hydrophobic group incorporation and degree of hydrolysis showed good agreements with feed ratio. Statistical hydrophobic group distribution along the polymer backbone was expected. For samples with high viscosity and poor solubility, gel HRMAS NMR was successfully employed. The results indicate that post-modification is a more effective way to control the composition of HAPAMs compared against micellar process.  相似文献   

12.
One kind of polymer gel P(AM‐AA‐AMPS) was prepared by radical aqueous copolymerization, using acrylamide (AM), acrylic acid (AA) and 1‐acrylanmido‐2‐methylpropanesulfonic acid (AMPS) as monomers, N,N‐methacrylamide (MBA) as crosslinker and ammonium persulfate (APS) as initiator. The microstructure and molecular structure of the polymer gel were characterized by environmental scanning electron microscope (ESEM), infrared spectrometer (IR) and thermal gravity analysis (TGA). Main factors affecting the gelation behavior of P(AM‐AA‐AMPS) were qualitatively and quantitatively studied by multi‐speckle diffusion wave spectroscopy (MS‐DWS) technology, and the elasticity index (EI) and macroscopic viscosity index (MVI) were introduced to evaluate the elasticity and viscosity of the polymer gel. The results show that the synthesized P(AM‐AA‐AMPS) polymer gel has three‐dimensional network structure gel with thermally resistant and salts tolerant groups. The EI and MVI of solution increase abruptly during the gelation time and the two indexes tend to stabilize. Under certain conditions, with the increase of reaction temperature and concentration of monomers and initiator, the gelation time of polymer gel gets shorter and the gel strength increases; with the increase of concentration of crosslinker, the strength of polymer gels increases, while the gelation time remains almost unchanged. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43364.  相似文献   

13.
The terpolymer (PASA) of acrylamide with butyl styrene and sodium 2‐acrylamido‐2‐methylpropane sulfonate was synthesized. The composition and molecular structure were characterized by elemental analysis, UV, FTIR, and 1H NMR. The aggregation behaviors of PASA were studied by means of the fluorescent probe analysis and environmental scanning electron microscope (ESEM). The flourescent probe analysis indicates that the PASA molecules form excellent hydrophobically associating structures in pure water and with the increase in PASA concentration at low concentrations, the nonpolarity of hydrophobic microdomains and the degree of intermolecular hydrophobic association increase in aqueous and brine solution. ESEM measurements show that gigantic aggregates have been formed in the PASA aqueous solution at the polymer concentration of 0.05 g dL?1, which is the critical association concentration of the polymer, and excellent solution properties of PASA are attributed to integrated network‐structures formed by PASA in aqueous solution, which are collapsed by the addition of salt, resulting in the decrease in apparent viscosity of PASA in brine solution. However, with the increase in the NaCl concentration or the PASA concentration, the number and size of aggregates increase, leading to the remarkable increase in the apparent viscosity of PASA in brine solution. These results are consistent with the AFM and viscosity study results. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:277–286, 2007  相似文献   

14.
The monomers N‐allyl camphor sulfonamide (CSAP) and N,N‐diallyl camphor sulfonamide (CSDAP) were copolymerized with acrylamide (AM), acrylic acid (AA) for EOR, respectively. The effect of the synthesis conditions on apparent viscosity was investigated, and the copolymers were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), environmental scanning electron microscope (ESEM), and thermogravimetric analysis (TGA). Increasing mass ratio of diallyl CSDAP could lead to the water‐insoluble of copolymer, and competition of free radicals could make polymerization of AM/AA/CSDAP more difficult than AM/AA/CSAP. The thickening function and temperature resistance of two copolymers were remarkably improved in comparison with similar molecular weight partially hydrolyzed polyacrylamide (HPAM). In addition, the pronounced temperature resistance of the copolymers has been also demonstrated by temperature resistance test. It has also found that copolymers AM/AA/CSAP and AM/AA/CSDAP brine solutions could obtain significant enhanced oil recovery at 70°C suggesting their potential being applied in chemical enhanced oil recovery. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41238.  相似文献   

15.
Two novel hydrophobically modified anionic polyacrylamides (HM‐PAMs), p(AM/NaA/NaAMC12S/BOAM) and p(AM/NaA/OP‐10‐AC/BOAM) have been prepared by an aqueous micellar copolymerization technique from acrylamide, sodium acrylate (NaA), sodium 2‐(acrylamido)dodecane‐1‐sulfonate (NaAMC12S), octylphenol polyoxyethylene acrylate (OP‐10‐AC), and small amounts of N‐benzyl‐N‐octylacrylamide, respectively, with the objective of investigating the copolymers' rheological behaviors and surface activities under various conditions such as polymer concentration, shear rate, temperature, and salinity. As expected, the copolymers exhibit improved thickening properties due to intermolecular hydrophobic associations as the solution viscosity of the copolymers increases sharply with increasing polymer concentration. A decrease in viscosity is observed with increasing temperature, and the solution viscosity of the copolymers decreases with increasing NaCl concentration. Furthermore, the block copolymers exhibit high air–liquid surface activities as the surface tensions (STs) decrease with increasing polymer concentration. This behavior is yet another evidence of polymolecular micelles formation of the copolymers in aqueous solution, and thus the high tendency to adsorb at an interface. The ST exhibited by the copolymers was found to be relatively insensitive to the concentration of salt (NaCl). Scanning electron micrographs showed large aggregates in solutions, which is formed by the association from the hydrophobic groups of the polymers. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
In this study, a kind of anionic polyacrylamide (P(AM‐AA‐AMPS)) was synthesized using acrylamide (AM), acrylic acid (AA), and 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) under ultraviolet (UV) irradiation. The conditions of the polymerization reaction such as monomer mass ratio, solution pH value, EDTA concentration and urea concentration were investigated by using the single factor approach and an L16 (45) orthogonal array. The structure and morphologies of the copolymer were determined by nuclear magnetic resonance spectrometer (NMR), infrared spectrometer (IR) and scanning electron microscope (SEM). The results show P(AM‐AA‐AMPS) with the intrinsic viscosity of 1.5 × 103 mL g?1 was synthesized at optimal conditions: mass ratio, m(AM) : m(AA) : m(AMPS) of 70 : 10 : 10, pH value of 9.0, EDTA concentration of 0.10% and urea concentration of 0.20%. In addition, P(AM‐AA‐AMPS) had better flocculation efficiency than commercial PAM in sludge dewatering experiment; the minimum filter cake moisture content could be reduced to 65.1%. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
A water‐soluble poly(AM‐AA‐DMDAAC‐TCAP) was prepared using acrylamide (AM), acrylic acid (AA), diallyl dimethyl ammonium chloride (DMDAAC), and N‐allyl‐4‐methylbenzenesulfonamide (TCAP), and the synthesis conditions were investigated. The obtained copolymer was characterized by FTIR, 1H‐NMR, SEM, TG, and XRD. The temperature resistance and thickening function of the copolymer are improved significantly compared with that of partially hydrolyzed polyacrylamide. It is found that the viscosity of copolymer could achieve up to 53.3% retention rate at 120°C compared to that at 30°C. About 16.6% for enhanced oil recovery is obtained by poly(AM‐AA‐DMDAAC‐TCAP) brine solution at 65°C. In addition, the results of XRD show that 3000 mg/L copolymer combined with 10 wt % KCl solution could reduce the d‐spacing of sodium montmorillonite from 18.94 to 14.86 Å exhibiting remarkable effect on inhibiting hydration of clays. All the results demonstrate that poly(AM‐AA‐DMDAAC‐TCAP) have excellent performance for potential application in enhance oil recovery. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40727.  相似文献   

18.
Thermal stability and rheological properties of a novel surfactant–polymer system containing non‐ionic ethoxylated fluorocarbon surfactant was evaluated. A copolymer of acrylamide (AM) and 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) was used. Thermal stability and surfactant structural changes after aging at 100 °C were evaluated using TGA, 1H NMR, 13C NMR, 19F NMR and FTIR. The surfactant was compatible with AM–AMPS copolymer and synthetic sea water. No precipitation of surfactant was observed in sea water. The surfactant was found to be thermally stable at 100 °C and no structural changes were detected after exposure to this temperature. Rheological properties of the surfactant–polymer (SP) system were measured in a high pressure rheometer. The effects of surfactant concentration, temperature, polymer concentration and salinity on rheological properties were studied for several SP solutions. At low temperature (50 °C), the viscosity initially increased slightly with the addition of the surfactant, then decreased at high surfactant concentration. At a high temperature (90 °C), an increase in the viscosity with the increase in surfactant concentration was not observed. Overall, the influence of the fluorocarbon surfactant on the viscosity of SP system was weak particularly at high temperatures and high shear rate. Salts present in sea water reduced the viscosity of the polymer due to a charge shielding effect. However, the surfactant was found to be thermally stable in the presence of salts.  相似文献   

19.
A polymer gel microsphere profile control agent [P(AA‐AM‐C18DMAAC)@SiO2] with a multilayer assembled structure was prepared by combining multiple assembly and nanocomposite technology via inverse emulsion polymerization and precipitation polymerization using silicon dioxide (SiO2), acrylamide (AM), and acrylic acid (AA). The structure of the gel microsphere was characterized by SEM, FTIR, and TGA. The results indicated that the multilayer assembled polymer gel microsphere was successfully prepared. The introduction of SiO2 enhanced the strength of the profile control agent, and the outer hydrophobic association polymer octadecyl dimethyl allylammonium chloride (C18DMAAC) changed the temperature resistance and salt resistance of the polymer by adjusting the polymer composition. Further, the influences of C18DMAAC dosage in P(AA‐AM‐C18DMAAC)@SiO2 at different temperatures on the water absorption ratio of the gel microsphere was studied and concluded that at C18DMAAC to P(AA‐AM)@SiO2 mass ratio of 1.25:1, the water absorption performance of the profile control agent was optimal. Moreover, the microsphere of the P(AA‐AM‐C18DMAAC)@SiO2 shows the characteristics of absorb water slowly at low temperatures and quickly at high temperatures. And the prepared microsphere has a certain salt tolerance, and the viscosity of the P(AA‐AM‐C18DMAAC)@SiO2 microsphere increases slowly, so it could be used as a promising profile control agent in future. POLYM. ENG. SCI., 59:1507–1516 2019. © 2019 Society of Plastics Engineers  相似文献   

20.
In this study, the way of preparing polyvinyl acetate (PVAc) with lower polydispersity index (PDI) was studied. By adding small amount of monomer with polar group, such as acrylic acid (AA), α-methacrylic acid (MAA), or acrylamide (AM), as modulation monomer, the polymerization was carried out at 65°C with a mechanical agitator using AIBN as initiator under N2 atmosphere. Effects of the mol ratio of modulation monomer/VAc and structure of the modulation monomer on the polymerization conversion, the molecular weight and molecular weight distribution of the obtained polymers were investigated through 1H NMR, gravity method, and gel permeation chromatography. The results show that by adding modulation monomer into the reactive system the PVAc with lower PDI could be got. With the increase of the modulation monomer amount, the conversion and the molecular weight decrease, and the PDI of the obtained polymer is lower. When the mol ratio of AA/VAc is 3 : 100, the PDI of the obtained polymer is 1.84. When the mol ratio of AM/VAc is 1 : 100, the PDI of the obtained polymer is 1.68, which is narrower than that without AM. All researches we have done laid a foundation for further study. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号